СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   


Детали файла
Имя файла:3594.ПЗ.01;ПМТ.01;1
Размер:238 Kb
Дата публикации:2015-03-09 04:17:02
Описание:
Математика (курс 10) - Промежуточный модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
Алгоритм называется неустойчивым, если
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции если известно, что (4х-1)sinax dx = - + cosax dx
Xарактеристики уравнения ut + 4ux = 0 имеют вид
Аргумент числа z = x + iy (x y > 0) равен
В окрестности точки z = 0 справедливо разложение
Величина равна
Волновое уравнение (одномерное) имеет вид
Волновое уравнение в пространстве имеет вид
Волновое уравнение на плоскости имеет вид
Выбор начального приближения на сходимость или расходимость метода Зейделя при решении систем линейных уравнений
Вычет равен
Вычет равен
Вычет функции в полюсе а первого порядка вычисляется по формуле
Вычет функции в полюсе а порядка n вычисляется по формуле
Вычет функции в конечной изолированной особой точке а этой функции равен
Вычет функции в бесконечности равен
Вычетом функции в конечной изолированной особой точке а этой функции называется выражение
Гиперболический тип имеет уравнение
Дана система и задано начальное приближение (1; 1). Один шаг метода Зейделя дает первое приближение
Дана система Первое приближение для метода Зейделя с начальным приближением ( 0,1 ; 0,2 ) будет равно
Дано уравнение x = sinx + 1 и начальное приближение x0 = π ⁄ 2 . Первое приближение x1 метода простой итераций равно
Действительная часть числа равна
Для коэффициентов ряда Тейлора функции справедлива оценка ( R - радиус сходимости ряда):
Для линейной системы уравнений вычисления по итерационной формуле называют методом
Для линейной системы уравнений вычисления по итерационной формуле называют методом
Для матрицы A = метод Зейделя x(k+1) = Ax(k) будет
Для обратного хода метода Гаусса подготовлены следующие системы уравнений
Для однолистности отображения в области D необходимо и достаточно чтобы область D не содержала никаких двух различных точек и , связанных соотношением
Для однолистности отображения в области D необходимо и достаточно чтобы область D не содержала никаких двух различных точек и , связанных соотношением
Для решения нелинейного уравнения второй порядок сходимости имеет метод
Для системы линейных уравнений известны обратная матрица A-1 и вектор правых частей . A-1 = = . Тогда вектор решения системы равен
Для функции точка является
Для функции точка является
Для функции точка является
Для функции точка является
Достаточным условием сходимости метода Ньютона для уравнения F( x ) = 0 будет выполнение условия
Дробно-линейное отображение, переводящее единичный круг в единичный круг и отличное от тождественного, имеет вид
Единичной матрицей является матрица
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х2 отрезка [-0,4 ; 0,3] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х3 отрезка [-0,5 ; 0,4] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = cosx - 1 отрезка [-;] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = e 0,5x - 1 отрезка [-0,5;0,5] в себя является сжатым с коэффициентом сжатия
Если на отрезке [ a , b ] функция F( x ) непрерывна, F( a ) ∙ F( b ) < 0, то метод половинного деления для уравнения F( x ) = 0 сходится
Если точка является устранимой особой точкой функции , то равен
Если точка является устранимой особой точкой функции , то равен
Если функция - четная те и точка является изолированной особой точкой этой функции то равен
Если функция - четная те и , то равен
Если функция в окрестности полюса а первого порядка представима в виде где и , то ее вычет в точке а вычисляется по формуле
Если функция удовлетворяет соотношениям и , то в окрестности точки z = 0 она разлагается в ряд
Если функция задана таблично: , то первые разности вычисляются по формулам:
Задана система уравнений Для заданного начального приближения x1(0) = 0 ;x2(0) = 1, первый шаг метода Зейделя дает следующие значения первого приближения { x1(1) , x2(1) }
Задано нелинейное уравнение вида lnx + x - 0,5 = 0 и начальное приближение x0 = 1. Один шаг метода Ньютона дает
Задано нелинейное уравнение вида x = x3 - 2x и начальное приближение x0 = 2. Один шаг метода простой итерации дает
Задано нелинейное уравнение вида x3 + 2x - 1 =0 и отрезок [ 0 ; 1 ] , на котором находится корень . Один шаг метода половинного деления дает отрезок
Запись нелинейного уравнения в виде x = φ( x ) требуется при решении его численным методом
Значительная потеря точности при выполнении арифметических операций на ЭВМ происходит
Интеграл равен
Интеграл равен
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lt4s5x(s)ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lcost×sins×x(s)ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - let+s x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - l(ts)3 x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
Интерполяцией называется замена исходной таблично заданной функции f(x) интерполирующей функцией φ(x) , при которой
Интерполяцией называется такая аппроксимация исходной функции f(x) интерполирующей функцией φ(x), при которой
Интерполяция называется глобальной, если
Итерационный метод решения нелинейного уравнения F( x ) = 0 по формуле xk+1 = xk − F( xk ) / F′( xk ) называется методом
Квадратурная формула метода трапеций на всем интервале интегрирования имеет порядок погрешности
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x4 и 1 в пространстве L2 [0,2] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x и x3 в пространстве L2 [0,3] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x2 и x3 в пространстве L2 [0,2] равен
Косинус-преобразование Фурье функции f(x) записывается в виде: Fc(a) = f(x)cosax dx. Найти косинус-преобразование Фурье функции если известно, что (2х-3)cosax dx = - sinax dx
Косинус-преобразование Фурье функции f(x) записывается в виде: Fc(a) = f(x)cosax dx. Найти косинус-преобразование Фурье функции
Коэффициент А(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле А(l) = j(x)cosxdx Тогда коэффициент А(l) при U(x,0) = j(x) = равен
Коэффициент А(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле А(l) = j(x)cosxdx Тогда коэффициент А(l) при U(x,0) = j(x) = sinx равен
Коэффициент В(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле В(l) = j(x)sinxdx Тогда коэффициент B(l) при U(x,0) = j(x) = равен
Коэффициент В(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле В(l) = j(x)sinxdx Тогда коэффициент B(l) при U(x,0) = j(x) = cosx равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sin2x равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sinx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сosx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сos2x равен
Круг сходимости ряда есть
Круг сходимости ряда есть
Матрица линейной системы является
Матрицей системы уравнений называется матрица . Тогда матрица системы уравнений равна
Матрицей системы уравнений называется матрица . Тогда матрица системы уравнений равна
Матрицей системы уравнений называется матрица . Тогда матрица системы уравнений равна
Матрицей системы уравнений называется матрица . Тогда матрица системы уравнений равна
Мероморфная функция с полюсом в бесконечности является
Метод Гаусса заключается в сведении исходной матрицы системы к эквивалентному виду, где матрица преобразованной системы является
Метод Зейделя для системы линейных уравнений
Метод половинного деления для уравнения F( x ) = 0 для непрерывной функции F( x ), удовлетворяющей на отрезке [ a , b ] условию F(a ) F(b) < 0 сходится
Методом Даламбера решается задача Коши для уравнения
Мнимая часть числа равна
Мнимая часть числа z равна
Многочленом, наименее уклоняющимся от нуля, будет
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = 3x2 +5x +1 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -6x2 +x -5 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -3x2 + 4 по многочленам Лежандра имеет вид:
Модулем комплексного числа называется число
Наилучшее линейное приближение функции cosx в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x2 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x3 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции ех в пространстве L2[-1,1] равно
Невязкой линейной системы уравнений называется величина
Нелинейное уравнение задано в виде x=φ( x ). Тогда условием сходимости метода простой итерации будет условие
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = t3s4 в пространстве L2[0,1] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = sin(t)×cos(s) в пространстве L2[0,p] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = et+s в пространстве L2[0,ln2] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = (ts)6 в пространстве L2[0,1] равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (5+2i)z1, (-1+i)z2, (3-5i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (-3-i)z1, (3-4i)z2, (2+2i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (3-6i)z1, (1+i)z2, (4+3i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( 4z1, (3+3i)z2, (3-3i)z3 ) равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x4 в пространстве L2 [-1,1] равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента ex в пространстве L2 [ln2,ln6] равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x в пространстве L2 [0,3] равна
Область, в которой уравнение (y2 - 1)Uxx - 2xUxy + Uyy = 0 имеет эллиптический тип, находится
Область, в которой уравнение Uxx - 4хUxy + (4 - у2)Uyy = 0 имеет гиперболический тип, находится
Общее решение одномерного волнового уравнения можно записать в виде u(x,t) = C1(x-at) + C2(x+at), где С1 и С2 - две
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения Ut + 5Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения Ut - 2Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения 3Ut + Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения 4Ut + Ux = 0 записывается в виде
Один шаг метода половинного деления для уравнения x2 − 2 = 0 для начального отрезка [0; 2] дает следующий отрезок
Отделить корни при решении нелинейного уравнения F( x ) = 0 это значит:
Параболический тип имеет уравнение
Параболический тип имеет уравнение
Погрешность математической модели является
Порядок сходимости метода Ньютона равен
Порядок сходимости метода простой итераций для одного нелинейного уравнения в общем случае равен
Предел последовательности равен
Преобразование Фурье F[f] по t функции f(x,t) имеет свойство
Преобразования Фурье f(x) =F(s)eixsds и F(s) =f(x)e-ixsdx называются
При вычислении методом Гаусса определитель матрицы A = равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {-1,0,1} , v {5,4,-3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {0,1,-1} , v {-2,2,4} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,0} , v {3,-7,-2} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,1} , v {1,2,3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Произведением комплексных чисел и называется число вида
Производная функции равна
Производная функции равна
Прямой ход метода Гаусса сводит линейную систему уравнений к виду:
Пусть координаты стереографической проекции точки z = x + iy есть ; тогда координаты стереографической проекции точки - z есть
Радиус сходимости ряда равен
Радиус сходимости ряда равен
Радиус сходимости степенного ряда находится по формуле
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Результат вычисления интеграла методом Симпсона с разбиением на два интервала (h = 1) равен
Результат вычисления интеграла методом трапеций с разбиением на два интервала (h = 1) равен
Результат вычисления интеграла методом трапеций с разбиением на два интервала (h = 1) равен
Решение задачи y¢¢ +16у = 0, у¢(0) = у¢() = 0 имеет вид
Решение задачи y¢¢ +9p2у = 0, у (0) = у¢() = 0 имеет вид
Решение задачи y¢¢ +9у = 0, у(0) = у(p) = 0 имеет вид
Решение задачи y¢¢ +p2у = 0, у(0) = у(3) = 0 имеет вид
Решение задачи y¢¢ +p2у = 0, у(0) = у¢() = 0 имеет вид
Решение задачи y¢¢ +p2у = 0, у¢(0) = у() = 0 имеет вид
Решение задачи y¢¢ +y = 0, y(0) = y(3) = 0 имеет вид
Решение задачи y¢¢ +у = 0, у (0) = y¢() = 0 имеет вид
Решение задачи y¢¢ + = 0, у(0) = у(4p) = 0 имеет вид
Решение задачи y¢¢ + = 0, у¢(0) = у¢(2) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = sinx и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = cosx и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = sinx имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = e-x имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = 4Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = 16Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х3 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = х имеет вид
Решением уравнения Ux + Uy - U = 0 является функция
Решением уравнения Ux - Uy + U = 0 является функция
Решением уравнения Ux - Uy - U = 0 является функция
Решением уравнения Uxx + Uyy = 0 является функция
Решением уравнения Uxx - Uyy = 0 является функция
Система линейных уравнений записана в виде, удобном для итераций, если она имеет вид
Скалярное произведение функций f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx. Тогда скалярное произведение элементов 3x2 и cosx3 в пространстве L2 [0,2] равно
Собственными векторами матрицы системы уравнений называются собственные векторы матрицы . Тогда собственными векторами матрицы системы уравнений являются векторы
Собственными векторами матрицы системы уравнений называются собственные векторы матрицы . Тогда собственными векторами матрицы системы уравнений являются векторы
Собственными векторами матрицы системы уравнений называются собственные векторы матрицы . Тогда собственными векторами матрицы системы уравнений являются векторы
Собственными значениями матрицы системы уравнений называются корни уравнения второго порядка = 0. Тогда собственными значениями матрицы системы уравнений являются значения
Собственными значениями матрицы системы уравнений называются корни уравнения второго порядка = 0. Тогда собственными значениями матрицы системы уравнений являются значения
Собственными значениями матрицы системы уравнений называются корни уравнения второго порядка = 0 Тогда собственными значениями матрицы системы уравнений являются значения
Согласно теореме Лиувилля функция постоянна, если она
Согласно теореме о полной сумме вычетов имеет место равенство ( - конечные изолированные особые точки функции ):
Согласно формуле Эйлера имеет место равенство
Спектр линейного оператора А в евклидовом пространстве R2 A = :
Сумма ряда Фурье функции в точке х = 1 равна
Сходимость итерационного метода решения систем линейных уравнений зависит от
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества (-1,+¥) является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества {1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Множеством предельных точек множества {: n = 1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества всех рациональных чисел является множество
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства х2siny < 1 является множество решений
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства ex + 3x2y4 > 1 является множество решений
Уравнение Uxx + xUxy - yUyy = 0 имеет эллиптический тип в области, расположенной
Уравнение Uxx + 2yUxy + (x2 - 1)Uyy = 0 имеет гиперболический тип в области, расположенной
Уравнение Uxx - 2yUxy + (1 - x2)Uyy = 0 имеет гиперболический тип в области, расположенной
Уравнение x(t) - x(s)ds = et является интегральным уравнением
Уравнение x(t) -cos(t-s)x(s)ds = lnt является интегральным уравнением
Уравнение Uxx - Uxy + Uyy = 0 имеет тип
Уравнение (2t2 - sins)x(s)ds = tgt является интегральным уравнением
Уравнение ln(t2+ts+s2)x(s)ds = t + 3 является интегральным уравнением
Уравнение ( t6+s6)x(s)ds = sint является интегральным уравнением
Уравнение x(s)ds = 2t2 является интегральным уравнением
Уравнение Uxx + 3Uxy - 4Uyy = 0 имеет тип
Уравнение записано в виде, удобном для итераций x=0,5cos2x + π ∕ 8 . Первое приближение метода простой итерации x1 для начального приближения x0=π ∕ 4 равно
Уравнение теплопроводности в пространстве имеет вид
Уравнение теплопроводности на плоскости имеет вид
Уравнение теплопроводности после преобразования Фурье имеет вид
Уравнение уUxx + 2xUxy + Uyy = 0 имеет гиперболический тип в области, расположенной
Уравнение х(t) - ln(t2s - s3)x(s)ds = et является интегральным уравнением
Уравнение х(t) -cos(t+2s)x(s)ds = cos2t является интегральным уравнением
Уравнения характеристик для дифференциального уравнения 3ut + 4ux = 0 имеют вид
Уравнения характеристик для дифференциального уравнения 4ut - 3ux = 0 имеют вид
Уравнения характеристик для дифференциального уравнения tut + xux + u = 0 имеют вид
Уравнения характеристик для дифференциального уравнения ut + 4ux = 0 имеют вид
Условие сходимости метода итераций для нелинейного уравнения x = φ( x ) заключается в том, что
Условия Коши-Римана комплексной дифференцируемости функции имеют вид
Формула метода Ньютона для нелинейного уравнения F( x ) = 0 имеет вид:
Формула метода трапеций для вычисления определенного интеграла имеет вид
Формула метода трапеций для вычисления определенного интеграла по сравнению с формулой метода Симпсона
Формула Муавра имеет вид
Фундаментальным решением уравнения Лапласа в пространстве называется функция
Фундаментальным решением уравнения Лапласа на плоскости называется функция
Фундаментальным решением уравнения Лапласа на плоскости называется функция
Функции U1 = 3x + 4y - 5 и U2 = 1 + e4x являются решениями уравнения
Функции U1 = 3xy + 4 и U2 = - 2 являются решениями уравнения
Функция f(x) = x разлагается в ряд Фурье + на отрезке [0, ]. Коэффициент a0 равен
Функция u(x,t) = C(x-at), где С - произвольная функция, является общим решением уравнения
Функция u(x,t) = C1(x-at) + C2(x+at), где С1 и С2 - произвольные функции, является общим решением уравнения
Функция u(x,t) = ex+at является решением уравнения
Функция u(x,t) = ln(x-at) является решением уравнения
Функция u(x,t) = sin(x-at) является решением уравнения
Функция u(x,t) = является решением уравнения
Функция u0(x,y,z) = является фундаментальным решением уравнения
Функция u0(x,y,z) = ln является фундаментальным решением уравнения
Функция преобразует полуполосу в
Функция преобразует полосу в
Функция преобразует сектор в
Функция преобразует внешность единичного круга в
Функция U является решением уравнения Utt = Uxx + sint × cosx. Тогда решением этого же уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sinx + cost. Тогда решением этого же уравнения будет функция
Функция U1 - решение линейного неоднородного уравнения LU = x2 + y2, функция U2 - решение соответствующего линейного однородного уравнения. Тогда решением первого уравнения будет также функция
Функция U1 - решение линейного однородного уравнения LU = 0, функция U2 - решение неоднородного уравнения LU = sinx + y. Тогда решением второго уравнения будет также функция
Функция U1 - решение линейного однородного уравнения LU = 0, функция U2 - решение неоднородного уравнения LU = ln(x+y). Тогда решением второго уравнения будет также функция
Функция Жуковского - это функция вида
Функция у = cos3px является решением краевой задачи
Функция у = cos3pх является собственной функцией задачи Штурма-Лиувилля у¢¢ + lу = 0, у¢(0) = у¢() = 0 с собственным значением
Функция у = cos5x является решением краевой задачи
Функция у = cosx является решением краевой задачи
Функция у = cosх является собственной функцией задачи Штурма-Лиувилля у¢¢ + lу = 0, у¢(0) = у¢(3p) = 0 с собственным значением
Функция у = sinpх является собственной функцией задачи Штурма-Лиувилля у¢¢ + lу = 0, у(0) = у¢() = 0 с собственным значением
Функция у = sinx является решением краевой задачи
Функция у = sinх является собственной функцией задачи Штурма-Лиувилля у¢¢ + lу = 0, у(0) = у(3p) = 0 с собственным значением
Целая функция с полюсом в бесконечности является
Целая функция с устранимой особенностью в бесконечности является
Частным комплексных чисел и называется число вида
Число 125,7 в ЭВМ для режима с плавающей точкой в нормализованном виде имеет следующее представление
Эллиптический тип имеет уравнение
Для скачивания этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
Нажимая на кнопку "Скачать бесплатно" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"


.