СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   


Детали файла
Имя файла:3556.ПЗ.01;ПМТ.01;1
Размер:182 Kb
Дата публикации:2015-03-09 04:16:44
Описание:
Математика (курс 9) - Промежуточный модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции
Cинус-преобразование Фурье функции f(x) записывается в виде: Fs(a) = f(x)sinax dx. Найти синус-преобразование Фурье функции если известно, что (4х-1)sinax dx = - + cosax dx
В окрестности точки z = 0 справедливо разложение
В окрестности точки z = 0 справедливо разложение
Гармонический ряд является
Гармоническим рядом называется ряд
Гармонической называется функция u (x,y), удовлетворяющая уравнению
Геометрический ряд сходится, если
Дан ряд , члены которого имеют произвольные знаки, если
Даны ряды (1) и (2); верное утверждение -
Даны ряды (1) , (2) и (3), верно утверждение, что
Даны ряды (1) и (2); согласно признаку Даламбера,
Для ряда общий член равен
Для ряда общий член равен
Для ряда общий член равен
Для функции точка z = 0 является
Для функции точка z = 0 является
Для функции точка z = 0 является
Для функции точка z = 0 является
Для функции точка z = 0 является
Для функции точка z = 0 является
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х2 отрезка [-0,4 ; 0,3] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х3 отрезка [-0,5 ; 0,4] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = cosx - 1 отрезка [-;] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = e 0,5x - 1 отрезка [-0,5;0,5] в себя является сжатым с коэффициентом сжатия
Если предел общего члена ряда не равен нулю, то ряд
Если степенной ряд расходится в точке , то он расходится (по теореме Абеля) и при
Если члены равномерно сходящегося в D функционального ряда непрерывны, то сумма ряда
Знакочередующимся является ряд
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lt4s5x(s)ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lcost×sins×x(s)ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - let+s x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - l(ts)3 x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при l < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lsint×sins×x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x4 и 1 в пространстве L2 [0,2] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x и x3 в пространстве L2 [0,3] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x2 и x3 в пространстве L2 [0,2] равен
Косинус-преобразование Фурье функции f(x) записывается в виде: Fc(a) = f(x)cosax dx. Найти косинус-преобразование Фурье функции если известно, что (2х-3)cosax dx = - sinax dx
Косинус-преобразование Фурье функции f(x) записывается в виде: Fc(a) = f(x)cosax dx. Найти косинус-преобразование Фурье функции
Коэффициент А(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле А(l) = j(x)cosxdx Тогда коэффициент А(l) при U(x,0) = j(x) = равен
Коэффициент А(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле А(l) = j(x)cosxdx Тогда коэффициент А(l) при U(x,0) = j(x) = sinx равен
Коэффициент В(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле В(l) = j(x)sinxdx Тогда коэффициент B(l) при U(x,0) = j(x) = равен
Коэффициент В(l) в задаче Коши для уравнения теплопроводности Ut = Uxx, U(x,0) = j(x) вычисляется по формуле В(l) = j(x)sinxdx Тогда коэффициент B(l) при U(x,0) = j(x) = cosx равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sin2x равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sinx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сosx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сos2x равен
Круг сходимости ряда есть
Круг сходимости ряда есть
Круг сходимости ряда есть
Методом Даламбера решается задача Коши для уравнения
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = 3x2 +5x +1 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -6x2 +x -5 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -3x2 + 4 по многочленам Лежандра имеет вид:
Наилучшее линейное приближение функции cosx в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x2 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x3 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции ех в пространстве L2[-1,1] равно
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = t3s4 в пространстве L2[0,1] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = sin(t)×cos(s) в пространстве L2[0,p] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = et+s в пространстве L2[0,ln2] равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = (ts)6 в пространстве L2[0,1] равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (5+2i)z1, (-1+i)z2, (3-5i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (-3-i)z1, (3-4i)z2, (2+2i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (3-6i)z1, (1+i)z2, (4+3i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( 4z1, (3+3i)z2, (3-3i)z3 ) равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x4 в пространстве L2 [-1,1] равна
Область, в которой уравнение (1 - x2)Uxx + yUxy + Uyy = 0 имеет эллиптический тип, находится
Область, в которой уравнение Uxx - 4хUxy + (4 - у2)Uyy = 0 имеет гиперболический тип, находится
Общее решение одномерного волнового уравнения можно записать в виде u(x,t) = C1(x-at) + C2(x+at), где С1 и С2 - две
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения Ut + 5Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения Ut - 2Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения 3Ut + Ux = 0 записывается в виде
Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) - произвольная дифференцируемая по u функция. Тогда общее решение уравнения 4Ut + Ux = 0 записывается в виде
Общее решение уравнения ut + aux = 0, где С - произвольная функция, записывается в виде
Общий член ряда имеет вид
Общий член ряда равен
Общий член ряда равен
Общий член ряда равен
Преобразование Фурье F[f] по t функции f(x,t) имеет свойство
Преобразование Фурье F[f] функций удовлетворяет свойству линейности
Преобразование Фурье F[f] функций удовлетворяет свойству свёртки
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {-1,0,1} , v {5,4,-3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {0,1,-1} , v {-2,2,4} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,0} , v {3,-7,-2} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,1} , v {1,2,3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Пятый член ряда равен
Пятый член ряда равен
Пятый член ряда равен
Радиус сходимости ряда равен
Радиус сходимости ряда равен
Радиус сходимости степенного ряда находится по формуле
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A=
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = sinx и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = cosx и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = e-x и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = cosx имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = sinx имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = e-x имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = 4Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = 16Uxx при начальном отклонении U(x,0) = х2 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = х3 и начальной скоростью Ut (x,0) = 0 имеет вид
Решение уравнения колебания струны Utt = a2Uxx с начальным отклонением U(x,0) = j(x) и начальной скоростью Ut(x,0) = y(x) записывается в виде U(x,t) = + y(x)dx Тогда решение уравнения Utt = а2Uxx при начальном отклонении U(x,0) = 0 и начальной скоростью Ut (x,0) = х имеет вид
Решением уравнения Uxx + Uyy = 0 является функция
Решением уравнения Uxx - Uy = 0 является функция
Решением уравнения Uxx - Uyy = 0 является функция
Решением уравнения Uxx + Uy = 0 является функция
Решением уравнения Uxy = 0 является функция
Решением уравнения Uyy + Ux = 0 является функция
Решением уравнения Uyy - Ux = 0 является функция
Решением уравнения x2Uxx - y2Uyy = 0 является функция
Решением уравнения xUx - Uy - xU = 0 является функция
Решением уравнения xUx - yUy - xy = 0 является функция
Ряд
Ряд
Ряд (p > 0)
Ряд по признаку Даламбера
Ряд называется сходящимся, если
Рядом Маклорена называется ряд
Рядом Тейлора называется ряд
Ряды и
Свёрткой функций f(x) и g(x) называется функция
Спектр линейного оператора А в евклидовом пространстве R2 A = :
Спектр линейного оператора А в евклидовом пространстве R2 A = :
Спектр линейного оператора А в евклидовом пространстве R2 A = :
Спектр линейного оператора А в евклидовом пространстве R2 A = :
Спектр линейного оператора А в евклидовом пространстве R2 A=
Степенным называют ряд вида
Сумма ряда Фурье функции в точке х = 1 равна
Сумма ряда Фурье функции в точке х = 2 равна
Сумма ряда Фурье функции в точке х = 4 равна
Сумма ряда Фурье функции в точке х = равна
Сходящимся является знакочередующийся ряд
Сходящимся является знакочередующийся ряд
Теорема Абеля показывает, что для ряда все точки сходимости расположены
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества (-1,+¥) является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества {1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Множеством предельных точек множества {: n = 1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества всех рациональных чисел является множество
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства х2siny < 1 является множество решений
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства ex + 3x2y4 > 1 является множество решений
Третий член ряда равен
Третий член ряда равен
Уравнение 2Uxx - 3Uxy = 0 имеет тип
Уравнение 2Uxx - Uxy + Uyy = 0 имеет тип
Уравнение 3Uxx + 2Uxy + 5Uyy = 0 имеет тип
Уравнение 4Uxy - Uyy = 0 имеет тип
Уравнение x(t) - x(s)ds = et является интегральным уравнением
Уравнение x(t) -cos(t-s)x(s)ds = lnt является интегральным уравнением
Уравнение (2t2 - sins)x(s)ds = tgt является интегральным уравнением
Уравнение ln(t2+ts+s2)x(s)ds = t + 3 является интегральным уравнением
Уравнение ( t6+s6)x(s)ds = sint является интегральным уравнением
Уравнение x(s)ds = 2t2 является интегральным уравнением
Уравнение Uxx + 3Uxy - 4Uyy = 0 имеет тип
Уравнение Uxx - 4Uxy + 5Uyy = 0 имеет тип
Уравнение теплопроводности после преобразования Фурье имеет вид
Уравнение х(t) - ln(t2s - s3)x(s)ds = et является интегральным уравнением
Уравнение х(t) -cos(t+2s)x(s)ds = cos2t является интегральным уравнением
Функции U1 = 2xy + 5x - 3y и U2 = 5(x2 - y2) являются решениями уравнения
Функции U1 = 3x + 4y - 5 и U2 = 1 + e4x являются решениями уравнения
Функции U1 = 3xy + 4 и U2 = - 2 являются решениями уравнения
Функции U1 = 5(x +y) + 2(x - y)2 и U2 = 5xy + 3x - 4 являются решениями уравнения
Функции U1 = e-ycosx и U2 = x2 + 2y + 5 являются решениями уравнения
Функции U1 = exsiny и U2 = y2 - 2x - 2 являются решениями уравнения
Функции U1 = ln (x - y) и U2 = ex + y являются решениями уравнения
Функции U1 = sin5x cosy и U2 = 25x2 + y2 + 25xy являются решениями уравнения
Функции U1 = sinx siny и U2 = x2 + y2 - 3xy являются решениями уравнения
Функции U1 = x + y2 и U2 = e2xy являются решениями уравнения
Функциональный ряд в точках
Функциональный ряд называется равномерно сходящимся в области D, если для любого можно указать такое число N, ________________, что при всех номерах неравенство справедливо для всех точек D
Функциональным является ряд
Функция f(x) = x разлагается в ряд Фурье + на отрезке [0, ]. Коэффициент a0 равен
Функция f(x) = x2 разлагается в ряд Фурье + + на отрезке [-2p, 2p]. Коэффициент a0 равен
Функция u(x,t) = C(x-at), где С - произвольная функция, является общим решением уравнения
Функция u(x,t) = C1(x-at) + C2(x+at), где С1 и С2 - произвольные функции, является общим решением уравнения
Функция u(x,t) = ln(x-at) является решением уравнения
Функция u(x,t) = sin(x-at) является решением уравнения
Функция U является решением уравнения Ut = Uxx + e-t + ex. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Ut = Uxx + e-tcosx. Тогда решением этого же уравнения будет функция
Функция U является решением уравнения Ut = Uxx + et + ex. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Ut = Uxx - etcosx. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Ut = Uxx - etsinx. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Utt = Uxx + cost×ex. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sint × cosx. Тогда решением этого же уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sint×e-x. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sinx + cost. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sinx + cost. Тогда решением этого же уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sinx × cost. Тогда решением этого же уравнения будет функция
Функция U является решением уравнения Utt = Uxx + sinx×et. Тогда решением соответствующего однородного уравнения будет функция
Функция U является решением уравнения Utt = Uxx - cosx×e-t. Тогда решением соответствующего однородного уравнения будет функция
Функция у = sinx является решением краевой задачи
Функция у = sinx является решением краевой задачи
Для скачивания этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
Нажимая на кнопку "Скачать бесплатно" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"


.