СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   


Детали файла
Имя файла:3472.ПЗ.01;ПМТ.02;1
Размер:285 Kb
Дата публикации:2015-03-09 04:16:32
Описание:
Математика (курс 7) - Промежуточный модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
n-й коэффициент Фурье bn нечетной 2p-периодической функции f(x) вычисляется по формуле
n-й коэффициент Фурье аn четной 2p-периодической функции f(x) вычисляется по формуле
n-й частичной суммой ряда называется
Абсолютный момент случайной величины Х порядка n определяется выражением
Апостериорные вероятности Р(Нi) - это вероятности
Баскетболист попадает в корзину мячом с вероятностью 0,7. Вероятность попасть мячом в корзину из пяти бросков три раза равна
В аквариуме плавают рыбки: 10 меченосцев и 6 вуалехвостов. Наугад ловится одна рыбка. Вероятность того, что это будет меченосец, равна
В течение часа коммутатор получает в среднем 30 вызовов. Вероятность того, что на коммутатор не поступит ни одного вызова в течение часа, равна
В урне находятся 4 белых и 8 красных шаров. Наугад извлекается один шар. Вероятность того, что он красного цвета, равна
В физкультурной группе 11 спортсменов и среди них 6 перворазрядников. Вероятность того, что среди 2 случайно выбранных спортсменов окажется два перворазрядника, равна
Вероятность безотказной работы каждой из 5 однотипных машин в течение заданного времени равна 0,8. Вероятность того, что по истечении заданного времени безотказно проработают две машины, а откажут три, равна
Вероятность достоверного события равна
Вероятность невозможного события равна
Вероятность перегорания лампы в течение некоторого времени рана 0,02. Вероятность того, что за это время перегорит только одна из восьми ламп, равна
Вероятность попадания в десятку для некоторого стрелка равна 0,7. Стрелок стреляет дважды по мишени. Вероятность того, что стрелок попадает дважды, равна
Вероятность попадания случайной величины в интервал (a, b) выражена через плотность распределения следующей формулой
Вероятность события А равна Р(А) = 0,3; вероятность В равна Р(В) =0,2. Известно, что события А и В независимы. Тогда вероятность произведения равна
Вероятность события может быть равна
Вероятность суммы двух случайных событий вычисляется по формуле
Возводятся два жилых дома. Вероятность сдачи в срок одного из них 0,8, а другого - 0,9. Тогда вероятность сдачи в срок хотя бы одного дома равна
Все первообразные функции задаются формулой
Всеми решениями уравнения являются
Выражение равно
Вычет функции в ее конечной особой точке равен
Гармоническим рядом называется ряд
Геометрические ряды и
Геометрический ряд а + aq + aq2 + … сходится, если его знаменатель q
Главное значение аргумента числа равно
Главной частью лорановского разложения функции в проколотой окрестности точки является
Граница множества состоит из
Два события А и В называются независимыми, если
Декартовой (алгебраической) формой числа является
Дисперсию случайной величины Y = a X + b, которая является линейной функцией от случайной величины Х, вычисляют как
Дисперсия постоянной величины C равна
Дисперсия произведения случайной величины Х и постоянной С равна
Дисперсия случайной величины обладает свойствами
Для лорановского разложения функции в проколотой окрестности точки
Для математического ожидания произведения случайной величины Х и постоянной С справедливо свойство:
Для ряда общий член равен
Для ряда общий член
Для ряда общий член равен
Для функции точка является нулем
Для функции точка
Для функции точка является
Для функции точка
Для функции интеграл равен
Для функции точка
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х2 отрезка [-0,4 ; 0,3] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = х3 отрезка [-0,5 ; 0,4] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = cosx - 1 отрезка [-;] в себя является сжатым с коэффициентом сжатия
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = e 0,5x - 1 отрезка [-0,5;0,5] в себя является сжатым с коэффициентом сжатия
Если , то показательной формой числа является
Если , то равен
Если - изображение функции-оригинала и , то изображением производной является
Если - интегралы от по окружностям 1); 2); 3), то
Если , то равно
Если , , то оригиналом функции является
Если предел общего члена ряда не равен нулю, то ряд
Если события А и В несовместны, то для них справедливо равенство
Значение равно
Из колоды в 32 карты извлекают одну карту. Вероятность того, что извлеченная карта - туз, равна
Из колоды в 32 карты извлекают одну карту. Вероятность того, что она будет красной масти, равна
Изолированная конечная особая точка функции является устранимой тогда и только тогда, когда главная часть лорановского разложения
Изолированная конечная особая точка функции является полюсом тогда и только тогда, когда главная часть лорановского разложения
Изолированными особыми точками функции являются точки
Интеграл по кривой , идущей из точки в
Интеграл по кривой , идущей из точки в
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Квантиль распределения Кр уровня Р непрерывной случайной величины с функцией распределения F(x) определяется как решение уравнения
Количество различных значений равно
Конец радиус-вектора числа после поворота на угол по часовой стрелке будет соответствовать числу
Конец радиус-вектора числа после поворота на угол против часовой стрелки будет соответствовать числу
Корректура книги объемом в 500 страниц имеет 500 ошибок. Число опечаток на одной странице - случайная величина, распределенная по закону Пуассона. Вероятность того, что на случайно выбранной странице окажется 2 опечатки, равна
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x4 и 1 в пространстве L2 [0,2] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x и x3 в пространстве L2 [0,3] равен
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x2 и x3 в пространстве L2 [0,2] равен
Коэффициент при х2 ряда Тейлора в окрестности точки х0 для функции f(x) равен
Коэффициент при х3 ряда Тейлора в окрестности точки х0 = 1 для функции f(x) равен
Коэффициент при х3 ряда Тейлора в окрестности точки х0 для функции f(x) равен
Коэффициент растяжения в точке при отображении равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sin2x равен
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при sinx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сosx равен
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сos2x равен
Лорановское разложение функции в проколотой окрестности точки
Лорановское разложение функции в проколотой окрестности точки
Математическое ожидание дискретной случайной величины - это
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1) . Разложение элемента f(x) = 3x2 +5x +1 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -6x2 +x -5 по многочленам Лежандра имеет вид:
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -3x2 + 4 по многочленам Лежандра имеет вид:
Множество
Модуль числа равен
Модуль числа равен
На первой полке12 книг, из которых 4 на русском языке, на второй полке 10 книг, из которых 5 на русском языке. С каждой полки выбирается по одной книге. Вероятность того, что хотя бы одна из книг будет на русском языке, равна
На тестировании студент выбирает наугад один ответ из 4 возможных, среди которых один ответ верный. Вероятность того, что он правильно ответит хотя бы на один вопрос из двух предложенных тестов, равна
На ткацком станке нить обрывается в среднем 0,3 раза в течение часа работы станка. Вероятность того, что нить оборвется трижды за час, равна
Наилучшее линейное приближение функции cosx в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x2 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции x3 в пространстве L2[-1,1] равно
Наилучшее линейное приближение функции ех в пространстве L2[-1,1] равно
Необходимое условие сходимости ряда состоит в том, что
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (5+2i)z1, (-1+i)z2, (3-5i)z3 ) равна
Норма оператора А (z1,z2,z3) = ( (a1+b1i)z1, (a2+b2i)z2, (a3+b3i)z3 ) на унитарном пространстве С3 определяется по формуле = max{,,}. Тогда норма оператора А (z1,z2,z3) = ( (-3-i)z1, (3-4i)z2, (2+2i)z3 ) равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x4 в пространстве L2 [-1,1] равна:
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента ex в пространстве L2 [ln2,ln6] равна
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x в пространстве L2 [0,3] равна
Норма элемента f(x) в пространстве С [a,b] определяется по формуле: = . Тогда норма элемента sinx в пространстве С [-,] равна.
Норма элемента f(x) в пространстве С [a,b] определяется по формуле: = . Тогда норма элемента 2x3 - 9x2 + 12x + 1 в пространстве С [0,2] равна:
Нулевой член ряда Тейлора в окрестности точки х0 для функции f(x) равен
Образом множества при отображении является множество
Образом точки при отображении является точка
Общий член ряда имеет вид
Общий член ряда имеет вид
Общий член ряда имеет вид
Показательной формой числа является
Последовательность чисел , , ,..., ,...
Предел равен
Пределы функции распределения F(x) на плюс и минус бесконечности равны соответственно
При делении числа на число радиус-вектор точки
При отображении полоса переходит в
При отображении полоса переходит в
При умножении числа на число радиус-вектор точки
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {-1,0,1} , v {5,4,-3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {0,1,-1} , v {-2,2,4} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,0} , v {3,-7,-2} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Применение алгоритма ортогонализации Грама-Шмидта к системе векторов u {1,1,1} , v {1,2,3} евклидова пространства R3 даёт векторы u,w, причем вектор w равен
Произведение равно
Произведение чисел и равно
Произведение чисел и равно
Произведение чисел и равно
Пятый член ряда равен
Пятый член ряда равен
Радиус сходимости степенного ряда 1 + х + х2 + … + хn + … равен
Радиус сходимости степенного ряда равен
Радиус сходимости степенного ряда равен
Радиус сходимости степенного ряда равен
Разложение в ряд Маклорена функции у = cos 4x и область сходимости полученного ряда следующие:
Разложение в ряд Маклорена функции у = cos x и область сходимости полученного ряда следующие:
Разложение в ряд Маклорена функции у = ln (1 + 2х) и область сходимости полученного ряда следующие:
Разложение функции ех в ряд Маклорена и область сходимости следующие:
Расстояние от f(x) до g(x) в пространстве С [a,b] определяется по формуле: r(f(x),g(x)) = Тогда расстояние между х3 + 3х2 + 1 и 24х в С [0,3] равно
Расстояние от f(x) до g(x) в пространстве С [a,b] определяется по формуле: r(f(x),g(x)) = Тогда расстояние между 2х3 + 2 и 3x2 + 12х в С[-1,3] равно
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Регулярные числа оператора А в евклидовом пространстве R2 A = :
Решением уравнения является
Решениями уравнения являются
Решениями уравнения являются
Ряд есть разложение в ряд Маклорена функции
Ряд Маклорена для функции y = sin x имеет вид
Ряд Маклорена для функции у = sin х имеет вид
Ряд Маклорена для функции у = е-х имеет вид
Ряд Маклорена для функции у = е2х имеет вид
Ряд Маклорена для функции у = е3х сходится
Ряд Маклорена для функции у = ех имеет вид
Ряд распределения дискретной случайной величины Х - это
Ряд Тейлора функции сходится
Ряд Тейлора функции сходится
Ряд Тейлора функции сходится
Ряд Фурье функции f(x) = |sin х| (-p < x < p), Т = 2p в точке х0 = - сходится к значению
Ряд Фурье функции f(x) = |х| (- p < x £ p), Т = 2p, в точке х = 0 сходится к значению
Ряд Фурье функции f(x) = |х| (-< x <), Т = 2ℓ, в точке х0 = 0 сходится к значению
Ряд Фурье функции f(x) = |х| (-< x <), Т = 2ℓ, в точке х0 = ℓ сходится к значению
Ряд Фурье функции f(x) = |х| (-< x <), Т = 2ℓ, в точке х0 = -сходится к значению
Ряд Фурье функции f(x) = х2 (- p < x £ p), Т = 2p, в точке х0 = -p сходится к значению
Ряд Фурье функции f(x) = х2 (- p < x £ p), Т = 2p, в точке х0 = сходится к значению
Ряд Фурье функции f(x) = х2 (- p < x £ p), Т = 2p, в точке х0 = - сходится к значению
Ряды 1 + 1 + 1 + … + 1 + … и 1+
Ряды и
Ряды и
Свертка равна
Свертка равна
Свободный член а0 ряда Фурье функции f(x) = -5х (-1 < x < 1), Т = 2 равен
Седьмой член ряда равен
Скалярное произведение функций f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx. Тогда скалярное произведение элементов 2х и в пространстве L2 [0,2] равно
Скалярное произведение функций f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx.Тогда скалярное произведение элементов sinх и cosx в пространстве L2 [0,] равно:
Скалярное произведение функций f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx. Тогда скалярное произведение элементов 3x2 и cosx3 в пространстве L2 [0,2] равно
Случайная величина имеет показательное распределение с математическим ожиданием, равным 7. Плотность вероятности такой величины равна
Случайная величина распределена по нормальному закону, ее математическое ожидание равно 1, а дисперсия - 25. Тогда ее функция распределения имеет вид
Случайная величина распределена по нормальному закону, ее математическое ожидание равно 2, а дисперсия - 16. Тогда ее плотность распределения имеет вид
Случайная величина распределена показательно с параметром , тогда равна
Случайная величина Х имеет биномиальное распределение с параметрами Ее числовые характеристики таковы:
Случайная величина Х имеет биномиальное распределение с параметрами Тогда ее числовые характеристики равны
Случайная величина Х имеет распределение Пуассона с параметром . Ее числовые характеристики равны
Случайная величина Х называется нормированной, если
Случайная величина Х равномерно распределена на , тогда ее математическое ожидание и дисперсия равны соответственно
Случайная величина Х равномерно распределена на . Тогда вероятность попасть в интервал будет равна
Случайная величина Х распределена по биномиальному закону с параметрами Ее числовые характеристики равны
Случайная величина Х распределена по нормальному закону. Известно, что математическое ожидание и среднеквадратическое отклонение этой случайной величины соответственно равны 30 и 10. Плотность распределения Х имеет вид
Случайная величина Х распределена показательно с параметром , тогда равна
Сопряженным к числу является
Спектр линейного оператора А в евклидовом пространстве R2 A=
Среднеквадратическое отклонение определяется как
Среднеквадратическое отклонение суммы случайной величины Х и постоянной С равно:
Степень равна
Степень равна
Степень равна
Сумма ряда равна
Так как , то изображением функции является
Так как , то изображением функции будет
Так как , то изображением функции будет
Так как , , то изображением свертки является
Так как , , то оригиналом функции является
Так как , то изображением функции является
Так как , то изображением функции является
Так как , то оригиналом функции является
Так как , то оригиналом функции будет
Так как , то оригиналом функции является
Так как , то изображением интеграла является
Так как , то изображением производной является
Так как , то оригиналом функции является
Так как , то изображением функции является
Так как , то изображением функции является
Так как , то изображением функции является
Так как , то изображением производной является
Так как то изображением функции является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества (-1,+¥) является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества {1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Множеством предельных точек множества {: n = 1;2;3;…} является
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества всех рациональных чисел является множество
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства х2siny < 1 является множество решений
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства ex + 3x2y4 > 1 является множество решений
Третий член ряда равен
Три шарика случайным образом помещают в трех ящиках. Вероятность того, что в каждом ящике окажется по одному шарику, равна
Уравнение
Уравнение
Уравнение
Уравнение
Уравнение ( может принимать любое из своих значений)
Уравнение (2t2 - sins)x(s)ds = tgt является интегральным уравнением
Уравнение ( t6+s6)x(s)ds = sint является интегральным уравнением
Уравнение x(s)ds = 2t2 является интегральным уравнением
Уравнение х(t) - ln(t2s - s3)x(s)ds = et является интегральным уравнением
Уравнение х(t) -cos(t+2s)x(s)ds = cos2t является интегральным уравнением
Функцию можно разложить в ряд Лорана
Функцию можно разложить в ряд Лорана по целым степеням
Функция отображает сектор , , в сектор
Функция отображает сектор на множество
Функция распределения дискретной случайной величины
Функция распределения случайной величины
Частное чисел и равно
Частное чисел и равно
Частное равно
Для скачивания этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
Нажимая на кнопку "Скачать бесплатно" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"


.