Cмещенной точечной оценкой параметра является
Автомашина пришла из Минска в Могилев со скоростью 40 км/ч и сразу же повернула обратно. Скорость ее на обратном пути была на 20 км/ч больше. Средняя скорость составила ___ км/ч
В итоге четырех измерений некоторой физической величины одним прибором получены следующие результаты: 8, 9, 11, 12. Выборочная средняя результатов измерений, выборочная и исправленная дисперсии ошибок прибора равны
В таблице статистического распределения, построенного по выборке, на одно число попала клякса. Это число:
В таблице статистического распределения, построенного по выборке, одна цифра написана неразборчиво. Это цифра:
В таблице статистического распределения, построенного по выборке, одна цифра написана неразборчиво. Это цифра:
Величина x имеет распределение N(a, s). Вероятность p{x < a - 2s} равна
Величина x имеет распределение N(a, s). Вероятность p{x < a - 1,65s} равна
Величина x имеет распределение N(a, s). Вероятность p{|x - a| < 2s} равна
Вероятность выиграть, играя в рулетку, 1/37. Сделав ставку 100 раз, мы ни разу не выиграли. Заподозрив, что игра ведется нечестно, мы решили проверить свою гипотезу, построив 95%-ый доверительный интервал. Определите, по какой формуле строится интервал и что дала проверка в нашем случае
Выборка задана таблицей. Медиана выборки равна
Выборочное распределение задано таблицей. Значение полигона в точке 1280 и мода, вычисленные по этой таблице, равны
Выборочное распределение задано таблицей. Значение кумуляты в точке 170 и медиана, вычисленные по этой таблице, равны
Дан вариационный ряд выборки объема n = 10: -2, 0, 3, 3, 4, 5, 9, 11, 12, 15. Выборочная медиана для этого ряда -d равна
Дан вариационный ряд выборки объема n = 7: -5, -3, 0, 1, 1, 4, 16. Выборочная медиана d и выборочное среднее для этого ряда равны
Дан вариационный ряд выборки объема n = 8: -2, 0, 3, 4, 6, 9, 12, 16. Выборочная медиана d и выборочное среднее для этого ряда равны
Дан вариационный ряд выборки объема n = 9: -2, 0, 3, 3, 4, 5, 9, 11, 12. Выборочная медиана для этого ряда -d равна
Дана выборка объема n = 10. Статистическое распределение этой выборки имеет вид: Тогда выборочное среднее для этой выборки равно
Дана выборка объема n = 10: 0, 2, 3, 5, 5, 6, 6, 7, 8, 9. Выборочное среднее равно
Дана выборка объема n = 5: -2, -1, 1, 3, 4. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -3, -2, 0, 2, 3. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -4, -2, 2, 6, 8. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -6, -4, 0, 4, 6. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: 2, 3, 5, 7, 8. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 7: 3, 5, -2, 1, 0, 4, 3. Вариационный ряд для этой выборки и размах вариационного ряда:
Дана выборка объема n: х1, х2, х3, …, хn. Выборочное среднее находится по следующей формуле:
Дана выборка объема n: х1, х2, х3, …, хn. Ее выборочное среднее равно Выборочная дисперсия находится по следующей формуле:
Дана выборка объема n: х1, х2, …, хn. Выборочная средняя равна . Тогда статистический центральный момент k-го порядка находится по следующей формуле:
Дана выборка объема n: х1, х2, …, хn. Если каждый элемент выборки увеличить в 5 раз, то выборочное среднее
Дана выборка объема n: х1, х2, …, хn. Если каждый элемент выборки увеличить на 5 единиц, то
Дана выборка объема n: х1, х2, …, хn. Статистический (или эмпирический) начальный момент k-го порядка находится по следующей формуле:
Дана выборка: 0, 5, 2, 8, 2, 6, 1, 5. Вариационный ряд для этой выборки и его размах следующие:
Дана конкретная выборка объема n = 10: 2, 2, 5, 5, 4, 3, 4, 2, 2, 5. Статистическое распределение этой выборки имеет следующий вид
Дано статистическое распределение выборки с числом вариантов m. Центральный момент k-ого порядка находится по формуле:
Дано статистическое распределение выборки с числом вариантов m: Выборочное среднее находится по следующей формуле:
Дано статистическое распределение выборки с числом вариантов m: Статистический (или эмпирический) начальный момент k-го порядка находится по следующей формуле:
Дано статистическое распределение выборки с числом вариантов m: Выборочная средняя равна . Тогда выборочная дисперсия S2 находится по формуле
Дано статистическое распределение выборки: График кумуляты для этой выборки имеет вид:
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Для 2-х нормальных независимых величин с одинаковыми дисперсиями получены выборки объема nх = 42 и ny = 20 с такими характеристиками: . При уровне значимости a = 0.05 проверяется гипотеза о равенстве генеральных средних mx=my (конкурирующая гипотеза mx≠my). Область принятия гипотезы Н0, равна
Для 2-х нормальных независимых величин с одинаковыми дисперсиями получены выборки объема nх = 42 и ny = 20 с такими характеристиками: . При уровне значимости a=0.05 проверяется гипотеза о равенстве генеральных средних mx=my (конкурирующая гипотеза mx≠my). Опытное значение статистики Т, применяемой для проверки гипотезы Н0, равно
Для вероятности р по выборке объема n с помощью величены и таблиц нормального распределения строится доверительный интервал. Если увеличить объем выборки в 100 раз, длина доверительного интервала примерно
Для выборки объема n = 9 сосчитали выборочную дисперсию S2 = 3.86. Исправленная дисперсия равна
Для выборки: -7, 2, 4, 0, 3, 2, 1, -5 вариационный ряд следующий:
Для нахождения по плотности вероятности f(x) вероятности попаданий случайной величины x в интервал (а, b) формула имеет следующий вид:
Для построения доверительного интервала для оценки вероятности биномиального распределения по относительной частоте надо пользоваться таблицами
Для проверки гипотезы о равенстве 2-х генеральных средних надо пользоваться таблицами
Для того, чтобы вдвое сузить доверительный интервал, построенный для математического ожидания, число наблюдений надо увеличить в ___ раз(а)
Для того, чтобы по выборке объема n = 10 построить доверительный интервал для математического ожидания нормального распределения, дисперсия которого неизвестна, нужны таблицы
Для того, чтобы построить 95%-ый доверительный интервал для математического ожидания m случайной величины, распределенной нормально с известной дисперсией s2, по выборке объема n вычисляется и используется следующая формула:
Для упрощения счета из всех значений выборки вычли 1280. Эмпирическая дисперсия при этом
Для упрощения счета из всех значений выборки вычли 1280. Эмпирическое среднее при этом
Доверительный интервал для вероятности успеха в схеме Бернулли для выборки с возвратом считается по следующей формуле:
Доверительный интервал для среднего считается по следующей формуле:
Если вероятность р некоторого события неизвестна, а для оценки этой вероятности производится n испытаний, то 95%-й процентный доверительный интервал для величины р находится по формуле (во всех формулах принято обозначение: )
Из генеральной совокупности извлечена выборка и составлена таблица эмпирического распределения: Точечная оценка генеральной средней составит
Известно, что X ~ N(0,3), Y ~ N(0.5, 2), Х и Y независимы. Случайная величина S = X + 2Y имеет распределение
Математическое ожидание и дисперсия случайной величины, имеющей плотность распределения , равны
Математическое ожидание и дисперсия случайной величины, распределенной равномерно на отрезке [1,3], равны
Монету бросали 100 раз. 62 раза выпал орел; для проверки гипотезы о симметричности монеты строим 95%-ый доверительный интервал для р и проверяем, попали ли мы в него. Определите, по какой формуле строится доверительный интервал и что даст проверка в нашем конкретном случае
По выборке объема n = 100 сосчитано выборочное среднее - 54 и выборочная дисперсия - 16. 95%-ый доверительный интервал для генерального среднего равен
По выборке объема n = 9 вычислили выборочное среднее 14.96 и исправленную несмещенную дисперсию 4.34. 95%-ый доверительный интервал для математического ожидания m(t8,0.95 = 2.31) имеет следующий вид:
По выборке объема n из нормального распределения с известной дисперсией s2 строится доверительный интервал для математического ожидания. Объем выборки увеличиваем в 25 раз. В предположении, что величины и S2 при этом изменятся мало, длина доверительного интервала
По выборке объема n из нормального распределения с неизвестной дисперсией строится доверительный интервал для математического ожидания. Объем выборки увеличиваем в 16 раз. В предположении, что величины и S2 при этом изменятся мало, длина доверительного интервала примерно
По выборке построен доверительный интервал для генерального среднего. Оказалась, что генеральное среднее по такому объему выборки определяется с точностью 0,2. Чтобы повысить точность вдвое, объем выборки надо
По выборке построена гистограмма Медиана равна
По выборке построена гистограмма. Медиана равна
По выборке построена гистограмма: Генеральная совокупность, из которой произведена выборка, имеет распределение
По выборке построена статистическая таблица распределения. Значение выборочной медианы
По выборке построена таблица статистического распределения выборки. Из приведенных таблиц возможна следующая:
По выборке построена таблица статистического распределения выборки. Определите, какая из таблиц возможна
Правильным является следующее соотношение:
Правильным является следующее соотношение:
Правильным является следующее соотношение:
Проверяется гипотеза о том, что вероятность выиграть в рулетку 1/37. Доверительный интервал с уровнем доверия 95% строится по формуле , где , n - число испытаний, m - количество выигрышей. Чтобы отношение числа выигрышей m к числу n отличалось от 1/37 не более чем на 0,01, надо сделать ставок не меньше, чем
Производится выборка объема n = 100 из генеральной совокупности, имеющей распределение N(20,4). По выборке строится выборочное среднее . Эта случайная величина имеет распределение
Распределение выборки рабочих по времени, затраченному на обработку одной детали, приведено в таблице: Эмпирическое среднее времени, затрачиваемого на обработку одной детали, эмпирическая дисперсия и среднеквадратическое отклонение равны
Результат пяти измерений равен 1, результат трех измерений равен 2 и результат одного измерения равен 3. Выборочное среднее и выборочная дисперсия соответственно равны
Случайная величина X распределена «нормально с параметрами 0,1» - N[0,1]. Вероятность для нее попасть внутрь интервала [-3,3] равна
Случайная величина X распределена «нормально с параметрами 3,2» - N[3,2]. Y=. Значения MY и DY, если исходить из свойств математического ожидания и дисперсии, равны
Случайная величина X распределена «нормально с параметрами 3,2» - N[3,2]. Вероятность для нее попасть внутрь интервала [-1,7] равна
Случайная величина распределена «нормально с параметрами 3,2» - N[3,2]. Ее математическое ожидание и дисперсия
Случайная величина распределена равномерно на отрезке [0, 2]. Ее математическое ожидание и дисперсия равны
Случайные величины Х и Y независимы. Правильное соотношение следующее:
Случайные величины Х и Y независимы. Правильное соотношение следующее:
Формула D(-X) = D(X)
Формула M(X + Y) = M(X) + M(Y) верна