В параллелограмме стороны . Проекция диагонали на сторону равна
В параллелограмме стороны . Проекция диаго-нали на сторону равна
В параллелограмме стороны . Проекция диаго-нали на сторону равна
В параллелограмме стороны , диагональ . Проекция стороны на сторону равна
В полярной системе координат задана точка М (, 2). Ее декартовы координаты равны
В треугольнике АВС стороны . Проекция вектора на вектор равна
В треугольнике АВС стороны . Проекция стороны на сторону равна
Векторы в порядке возрастания их длин расположены так:
Вершины треугольника АВС имеют координаты А (1,1,1), В (2,2,0), С (2,3,3). Проекция стороны на равна
Дано уравнение кривой второго порядка . Ее каноническое уравнение и тип кривой
Дано уравнение кривой второго порядка . Ее каноническое уравнение и тип кривой
Дано уравнение кривой второго порядка . Ее каноническое уравнение и тип кривой
Дано уравнение кривой второго порядка . Ее каноническое уравнение и тип кривой
Дано уравнение линии . В полярных координатах оно имеет вид
Даны векторы и . Скалярное произведение векторов (), где равно
Даны векторы и . Скалярное произведение векторов (), где , равно
Даны векторы и . Скалярное произведение векторов (), где , равно
Даны векторы и . Квадрат длины вектора равен
Даны векторы и . Координаты их векторного произведения равны
Даны векторы . Вектору , где точки А (2,4,8) и В (5,-2,5), коллинеарны
Даны векторы . Вектору , где точки А (2,4,8) и В (8,-8,2), коллинеарны
Даны векторы . Вектору , где точки А (1,1,1) и В (3,2,1), ортогональны векторы
Даны векторы . Вектору , где точки А (1,1,1) и В (2,-3,2), ортогональны векторы
Даны векторы . Вектору , где точки А (1,0,2) и В (2,1,3) ортогональны векторы
Даны два вектора и . Острый угол между этими векторами равен
Даны два вектора и . Острый угол между этими векторами равен
Даны две тройки векторов: 1) ; 2) . Определить образуют ли они правую или левую тройки
Даны декартовы координаты точки М (-1, 1). Ее полярные координаты
Даны полярные координаты точки М (, 3). Ее декартовы координаты равны
Даны уравнения кривых второго порядка: 5). Уравнениями парабол в этом списке являются уравнения
Даны уравнения кривых второго порядка: 5)7). Уравнениям эллипса (окружность - частный случай эллипса) в этом списке соответствуют уравнения
Даны уравнения кривых: ; 5). Число уравнений, задающих гиперболу, в этом списке равно
Длина векторного произведения векторов и равна
Длины векторов и , соответственно, равны 1 и 4, их скалярное произведение равно 2. Угол между векторами , равен
Для матрицы А = матрица, составленная из алгебраических дополнений, имеет вид
Для матрицы А = матрица, составленная из алгебраических дополнений, имеет вид
Единичные, взаимно перпендикулярные векторы образуют правую тройку. Вектор равен
Если в параллелограмме, построенном на векторах и , , то
Каноническое уравнение прямой, проходящей через точку М0(-1, 2) с направляющим вектором имеет вид
Каноническое уравнение прямой, проходящей через точку М0(-2, 4) с направляющим вектором имеет вид
Каноническое уравнение прямой, проходящей через точку М0(1, -4) параллельно оси ОУ, имеет вид
Каноническое уравнение прямой, проходящей через точку М0(1, 1) параллельно оси ОХ, имеет вид
Координаты векторного произведения векторов и равны
Координаты вершин гиперболы равны
Координаты вершин гиперболы равны
Координаты вершин гиперболы равны
Координаты вершин гиперболы равны
Координаты вершин параллелограмма равны А (1,0,1), В (2,1,0), С (2,2,3). Проекция диагонали на сторону равна
Координаты вершин треугольника АВС равны А (1,-1,0), В (0,1,1), С (1,2,0). Проекция стороны на сторону равна
Координаты вершин треугольника АВС равны А (1,2,-2), В (2,0,-1), С (2,3,-1). Проекция стороны на сторону равна
Координаты вершин эллипса равны
Координаты вершин эллипса равны
Координаты вершин эллипса равны
Координаты точки пересечения прямых 3х-4у+4 = 0 и х+4у-4 = 0 равны
Координаты фокуса параболы равны
Координаты фокуса параболы равны
Координаты фокусов гиперболы равны
Координаты фокусов гиперболы равны
Координаты фокусов эллипса равны
Координаты центра и радиус окружности равны
Матрица А равна А = . Ее определитель det A равен
На плоскости ОХУ уравнения: а) 2х-3у+1 = 0; в) 2х-3у+3 = 0; с) 6х+4у-1 = 0; d) 3х+2у+5 = 0
На плоскости ХОУ каноническое уравнение оси ОУ имеет вид
На плоскости ХОУ прямая
Неравенство<0 верно при
Объем параллелепипеда, построенного на векторах , равен
Объем треугольной пирамиды АВСD, где вершины А(1,1,1), В(-1,0,1), С(0,1,-1) и D(2,1,1), равен
Объем треугольной пирамиды, построенной на векторах , равен
Определитель 4-го порядка равен
Определитель 4-го порядка равен
Определитель Δ = равен нулю при b, равном
Определитель равен нулю при b равном
Определитель равен нулю при b равном
Определитель равен нулю при x равном
Определитель равен
Острый угол между плоскостями и (плоскостью XOY) равен
Острый угол между плоскостями и равен
Острый угол между прямыми 2х+у = 0 и у = 3х-4 равен
Острый угол между прямыми 5х-у+7 = 0 и 2х -3у+1 = 0 равен
Отношение модулей векторных произведений при равно
Отношение модулей векторных произведений при равно
Парабола, симметричная относительно оси ОХ, с вершиной в начале координат проходит через точку М (-4, 2). Уравнение такой параболы имеет вид
Плоскость отсекает на координатных осях OX, OY, OZ соответственно отрезки, равные
Площадь треугольника АВС, где А(1,1,1), В(1,0,2), С(2,3,2), равна
Поверхность является
Поверхность является
Поверхность является
Поверхность является
Поверхность является
Проекция вектора на ось OZ равна
Проекция вектора на ось OY равна
Прямая 2х+2у-3 = 0 образует с положительным направлением оси ОХ угол, равный
Прямая 3у = 5 образует с положительным направлением оси ОХ угол, равный
Прямая 3х-3у+5 = 0 образует с положительным направлением оси ОХ угол, равный
Прямая х+2у-6 = 0 отсекает на оси ОУ отрезок, равный
Прямые 2х+у-1 = 0 и 4х+у-3 = 0 пересекаются в точке
Прямые 4х+2у+5 = 0 и λх+у-1 = 0 перпендикулярны, если число λ равно
Прямые 4х+λу+5 = 0 и λх+у-1 = 0 перпендикулярны, если число λ равно
Расстояние d от точки М0(1, 1) до прямой 3х-4у+11 = 0 равно
Расстояние d от точки М0(3, 1) до прямой 4х+3у-10 = 0 равно
Расстояние между параллельными прямыми 4х+3у-1 = 0 и 4х+3у+4 = 0 равно
Расстояние от точки М(1, 1) до прямой 3х+4у+3 = 0 равно
Скалярное произведение векторов и равно -16, угол между ними , длина вектора равна 8. Длина вектора равна
Точкой пересечения прямой и плоскости является точка
Уравнение на плоскости определяет
Уравнение на плоскости ХОУ определяет
Уравнение на плоскости ХОУ определяет
Уравнение на плоскости ХОУ определяет
Уравнение Ах+Ву+С = 0 определяет прямую, параллельную оси ОУ, если 1) А = 0; 2) В = 0; 3) В = С = 0; 4) А = С = 0; 5) С = 0. Из перечисленных утверждений верными являются
Уравнение директрисы параболы имеет вид
Уравнение директрисы параболы имеет вид
Уравнение кривой в полярной системе координат имеет вид
Уравнение линии в декартовой системе имеет вид
Уравнение линии в декартовой системе имеет вид
Уравнение окружности в полярной системе координат имеет вид
Уравнение окружности в полярной системе координат имеет вид
Уравнение параболы с фокусом F(3, 0) и директрисой х+3 = 0 имеет вид
Уравнение прямой у = х в полярных координатах имеет вид
Уравнение прямой, проходящей через точку (1, -3) и параллельной биссектрисе I и III координатных углов, имеет вид
Уравнение прямой, проходящей через точку (1, 1) и перпендикулярной оси ОУ, имеет вид
Уравнения асимптот гиперболы имеют вид
Уравнения асимптот гиперболы имеют вид
Фокусы эллипса имеют координаты и . Большая полуось равна 5. Уравнение эллипса имеет вид
Центр симметрии гиперболы находится в начале координат. Действительная полуось b = 1, мнимая а = . Уравнение гиперболы имеет вид
Центр симметрии гиперболы находится в точке С (0, 1). Действительная полуось b = 3, мнимая полуось а = 1. Уравнение гиперболы имеет вид
Центр симметрии гиперболы находится в точке С(-2, 2). Действительная полуось а = 2, мнимая полуось b =. Уравнение гиперболы имеет вид