Найдите восьмой член геометрической прогрессии (b8 > 0), если b7 = 16, b9 = 25.
Ответ: b8 = _____.
Найдите модуль суммы первых пяти членов геометрической прогрессии: –1, 2, –4, … .
Ответ: |S5| = _____.
Найдите сумму первых пяти членов геометрической прогрессии: 3, 6, 12, … .
Ответ: S5 = _____.
Найдите сумму первых четырех членов геометрической прогрессии (bn), где b1 = 1, q = 2.
Ответ: S4 = _____.
Найдите сумму первых четырех членов геометрической прогрессии (bn), где b1 = 3, q = 4.
Ответ: S4 = _____.
Найдите четвертый член геометрической прогрессии (b4 > 0), если b3 = 36, b5 = 49.
Ответ: b4 = _____.
Найдите число членов конечной геометрической прогрессии (bn), если b1 = 5, q = 3, Sn = 200.
Ответ: п = _____.
Найдите число членов конечной геометрической прогрессии (bn), если b1 = –1, q = , Sn = –.
Ответ: n = _____.
Являются ли данные последовательности геометрическими прогрессиями?
А) 1, –х, х2, –х3, …
В) , , , …
Подберите правильный ответ
_____ равен произведению предшествующего и последующего членов.
Средним геометрическим чисел а и b называют число _____.
Укажите соответствие между началом фразы и ее продолжением:
Формула суммы п членов геометрической прогрессии: