На рисунке изображен график производной функции y = f(x). Найдите число точек экстремума этой функции.
На рисунке изображен график производной функции y = f(x). Найдите число промежутков возрастания этой функции.
На рисунке изображен график производной функции y = f(x). Найдите число промежутков убывания этой функции.
На рисунке изображен график производной функции у = f(x). Найдите число точек минимума этой функции.
На рисунке изображен график функции у = f(x). Укажите число промежутков возрастания функции
Найдите значение производной функции
y = sin(5x + 2. + cos(5x + 2. в точке х0= –1
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень, принадлежащий отрезку [0,8; 4], (или произведение таких корней, если их несколько) уравнения
Найдите наименьший, положительный период функции
Найдите ординату точки (или произведение ординат, если точек несколько) на плоскости, координаты (х,у) которых удовлетворяют условиям
Найдите произведение координат всех точек (х;у) на плоскости, для которых выполнено условие
Найдите промежуток, которому принадлежит корень уравнения
Найдите сумму модулей всех значений переменных, являющихся решением (или решениями, если их несколько) системы
Найдите сумму целых решений неравенства
Найдите число целых решений неравенства
Найдите число целых решений неравенства
Найдите значение выражения
Укажите уравнение окружности, изображенной на рисунке
Функция y = f(x) задана графиком. Найдите решение неравенства f(x) < 1
Функция y = f(x) задана графиком. Укажите множество значений этой функции
Функция y = f(x) задана графиком. Укажите множество значений этой функции
Функция y = f(x) задана графиком. Укажите функцию, график которой изображен на рисунке
Функция y = f(x) задана графиком. Укажите число промежутков возрастания этой функции
Функция y = f(x) задана на промежутке [-7; 8]. Найдите число целых решений неравенства f(х)>1
Функция y = f(x) задана на промежутке [–6; 10]. Укажите число решений уравнения
f(x) = 3
Функция y = f(x) определена графиком. Найдите число целых решений неравенства
f(x) > 2
Функция y = f(х) определена графиком. Укажите промежуток, на котором она принимает только положительные значения
Функция y=f(x) определена графиком. Найдите решение неравенства f(x) < 0
Функция у = f (х) задана графиком. Укажите число целых значений этой функции
Функция у = f(x) задана графиком. Укажите соотношение, которое определяет заданное множество на рисунке
Функция у = f(x) определена графиком на промежутке [–2; 7]. Найдите число целых решений двойного неравенства 0 < f(x) < 3
В прямоугольном параллелепипеде ABCDA1B1C1D1 заданы AD = 6, АВ = 5 и АА1 = 9. Найдите объем пирамиды EB1C1F, где Е – точка на AA1 и АЕ = 6, a F – точка на CD и
F = 4
Известно, что произведение суммы цифр двузначного числа на разность этих цифр
равно 48. Найдите это двузначное число (или сумму таких двузначных чисел, если их несколько).
На рисунке изображен график производной функции у = f(x). Найдите число точек, в которых тангенс угла наклона касательной к этой функции равен 2.
Пусть (x0; y0) – решение системы уравнений . Найдите произведение
x0 × y0
В конус, осевое сечение которого есть равносторонний треугольник, вписан шар. Найдите объем конуса, если объем шара равен 8.
В кубе ABCDA1B1C1D1 на серединах ребер AD и DC заданы соответственно точки М и N. Точка L лежит на ребре СС1, причем CL : LC1 = 1 : 5. Площадь круга, вписанного в каждую грань куба, равна 11. Вокруг куба описан шар. Определите площадь круга – сечения шара плоскостью, проходящей через точки М, N, L
В параллелепипеде ABCDA1B1C1D1 длины сторон основания ABCD равны АВ = 9, AD=12, причем BAD = 45°. Боковое ребро АА1 = 14 составляет угол 45° с основанием, отрезок А1В перпендикулярен основанию. На ребрах АА1, ВВ1, DD1 заданы соответственно точки М, N, L, причем AM =10, BN = 9, DL = 7. Секущая плоскость проходит через точки М, N, L и делит параллелепипед на два многогранника. Найдите наибольший из объемов этих многогранников
В правильной призме ABCDA1B1 D1 со стороной основания 3 и высотой точка Е лежит на ребре AD таким образом, что СЕ является биссектрисой треугольника ACD. Найдите расстояние от точки Е до плоскости B1CD1.
В правильной призме ABCDA1B1 D1 со стороной основания 72 и высотой 63 точка Е лежит на ребре AD таким образом, что СЕ является биссектрисой треугольника ACD. Найдите расстояние от точки Е до плоскости В1CD1.
В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 6 м, ВС = 8 м, м. Найдите площадь сечения параллелепипеда плоскостью, параллельной прямой АС и содержащей прямую
В прямоугольном параллелепипеде ABCDA1B1 D1 заданы длины сторон АВ = 5, ВС =12, . Найдите площадь сечения параллелепипеда плоскостью, параллельной прямой АС и содержащей прямую ВА1.
В треугольник ABC вписана окружность радиуса 2, которая делит отрезок АС на части с длинами 5 и 4. Найдите площадь треугольника ABC.
В треугольнике АВС проведена медиана АМ. Найдите площадь треугольника АВС, если АС = 3, ВС = 10, ÐМАС = 45°
Выразите величину log246,75« через значения а и b , если logn2 = a и logn3 = b
Выразите число через а, если log0,019 = а
Высота правильной четырехугольной призмы равна 8, а сторона основания равна . Найдите расстояние от вершины A до плоскости
Вычислите
Вычислите
Вычислите
Вычислите: log30,09 + 2log310
Вычислите
Вычислите
Вычислите
Дан параллелограмм ABCD. Высота ВН пересекает диагональ АС в точке К. Найдите длину отрезка АК, если АВ=10, ВС = 24 и АС =
Дан параллелограмм ABCD. Высота ВН пересекает диагональ АС в точке К. Найдите длину отрезка ВК, если АВ = 50, ВС = 40 и
Дан ромб ABCD с острым углом В. Площадь ромба равна 320, а синус угла В равен 0,8. Высота СН пересекает диагональ BD в точке К. Найдите длину отрезка СК
Дана правильная призма АВСА1В1С1, где АА1, ВВ1 и СС1 – боковые ребра. Сфера, центр которой лежит на ребре АА1, пересекает ребро А1С1 в точке М и касается плоскости основания АВС и плоскости СВВ1. Известно, что АВ = 12, А1М : МС1 = 3 : 1. Найдите площадь боковой поверхности призмы
Дана правильная призма АВСА1В1С1, где АА1, ВВ1 и СС1 – боковые ребра. Сфера, центр которой лежит на ребре АА1, пересекает ребро А1С1 в точке М и касается плоскости основания АВС и плоскости СВВ1. Известно, что АВ = 12, А1М : МС1 = 3 : 1. Найдите высоту призмы
Дана правильная треугольная пирамида со стороной основания, равной . Центр основания пирамиды является вершиной конуса, окружность основания которого вписана в боковую грань пирамиды. Найдите радиус основания конуса
Дана правильная треугольная пирамида. Центр основания пирамиды является вершиной конуса, окружность основания которого радиуса вписана в боковую грань пирамиды. Найдите сторону основания треугольной пирамиды
Дана правильная шестиугольная пирамида. Центр основания пирамиды является вершиной конуса, окружность основания которого вписана в боковую грань пирамиды. Найдите сторону основания пирамиды, если объем конуса равен
Дана призма ABCA1B1, в основании которой лежит равнобедренный прямоугольный треугольник с прямым углом С, а боковые ребра наклонены к плоскости основания под углом, синус которого равен 0,6. Отрезок С1А перпендикулярен плоскости основания и равен 3. Площадь боковой поверхности призмы обозначим S. Найдите целое, для которого выполнено условие
Для монтажа оборудования необходима подставка объёмом 1296 дм3 в форме прямоугольного параллелепипеда. Квадратное основание подставки будет вмонтировано в пол, а её задняя стенка – в стену цеха. Для соединения подставки по рёбрам, не вмонтированным в пол или стену, используется сварка. Определите размеры подставки, при которых общая длина сварочного шва будет наименьшей
Если приводится к виду
Если к четырем числам а, b, с, d, составляющим геометрическую прогрессию, прибавить соответственно 1, 16, 4 и 46, то получатся 4 числа, составляющие арифметическую прогрессию. Найдите сумму чисел а, b, с, d.
Задана арифметическая прогрессия с первым членом 3 и разностью 4, а также другая арифметическая прогрессия с первым членом 4 и разностью 5. Найдите сумму первых 11 совпадающих членов этих арифметических прогрессий.
Концы отрезка ВС лежат на окружностях двух оснований цилиндра. Радиус основания цилиндра равен 25, длина отрезка ВС равна , а угол между прямой ВС и плоскостью основания цилиндра равен 45º. Найдите расстояние между осью цилиндра и параллельной ей плоскостью, проходящей через точки В и С
Концы отрезка ВС лежат на окружностях двух оснований цилиндра. Радиус основания цилиндра равен 25, длина отрезка ВС равна , а угол между прямой ВС и плоскостью основания цилиндра равен 45º. Найдите расстояние между осью цилиндра и параллельной ей плоскостью, проходящей через точки В и С
На рисунке изображен график функции у = f (х). Укажите число решений уравнения f (x) = 0
Найдите 2 · tgx0, где х0 – наибольший, отрицательный корень уравнения
Найдите а + b, если
Найдите все значения , которые удовлетворяют неравенству < при любом значении параметра , принадлежащем промежутку
Найдите все положительные значения параметра a, при которых в области определения функции есть двузначные натуральные числа, но нет ни одного трехзначного натурального числа
Найдите все решения уравнения
Найдите все решения уравнения
Найдите длину промежутка значений параметра а или сумму длин таких промежутков, если их несколько, при которых в решении неравенства есть хотя бы одно натуральное трехзначное число, но нет ни одного натурального четырехзначного числа
Найдите значение a + b + c + r, если числа а, b, с и r выбраны таким образом, что равенство верно для всех допустимых значений х
Найдите значение log33k, если
Найдите значение log4(8а), если log2a0,25 = 2
Найдите значение выражения abc, если равенство верно для всех х ≠ 0.
Найдите значение выражения если а = 4, b = 25
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения если x = 1,25
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения , если а =16
Найдите значение выражения
Найдите значение выражения при а = 3.
Найдите значение выражения а + b, если
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения
Найдите значение выражения, если х = 8,24
Найдите значение параметра а (или произведение таких значений, если их несколько), при которых наименьший, положительный период функции
Найдите значение производной функции y = sin(3x + 7) – cos(3π + 7) в точке х0 =0
Найдите значение производной функции y = x · sin(2x + l) в точке
Найдите значение производной функции в точке х0 = –3
Найдите значение производной функции в точке х0 = 0
Найдите значение производной функции в точке х0 = –1
Найдите значение производной функции в точке х0=-2
Найдите значение производной функции в точке х0 = –1
Найдите значение производной функции у = (2х – 1. · е–х в точке х0 = –1
Найдите значение функции g(4), если известно, что f(2x – 1) = x – 3 и f(g(x)) = 2x – 5.
Найдите значение функции в точке максимума
Найдите значение х + у, если равенство выполнено для всех положительных а и b
Найдите значение, если log а 64 = 3
Найдите количество всех решений системы уравнений
Найдите корень (или произведение действительных, различных корней, если их несколько) уравнения
Найдите корень (или произведение корней, если их несколько) уравнения 3x + 63 = 72lоg2x.
Найдите корень (или произведение корней, если их несколько) уравнения
Найдите корень (или произведение корней, если их несколько) уравнения
Найдите корень (или произведение корней, если их несколько) уравнения
Найдите корень (или сумму действительных, различных корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень (или сумму корней, если их несколько) уравнения
Найдите корень или сумму (если их несколько) корней уравнения
Найдите множество значений функции
Найдите множество значений функции
Найдите множество значений функции
Найдите множество значений функции
Найдите множество значений функции у = 5 sin2 х – cos2 х – 5
Найдите множество значений функции у = log2(x2 + 4)
Найдите наибольшее значение а, при котором уравнение x3 + 5x2 + ax + b = 0 с целыми коэффициентами имеет три различных корня, один из которых равен – 2
Найдите наибольшее целое значение функции
Найдите наибольшее целое значение функции
Найдите наибольшее целое значение функции у = 2-cos2x
Найдите наименьшее из возможных значений величины если известно, что числа х – 3у, 2у + 1 и 40 являются последовательными членами геометрической прогрессии.
Найдите наименьшее целое значение функции
Найдите наименьшее целое значение функции
Найдите наименьший корень уравнения лежащий на интервале (–21; 0)
Найдите наименьший корень уравнения лежащий на интервале (-31; 0)
Найдите нули функции .
Найдите область определения функции
Найдите область определения функции
Найдите область определения функции
Найдите положительный корень (или сумму таких корней, если их несколько) уравнения
Найдите положительный корень (или сумму таких корней, если их несколько) уравнения
Найдите промежуток, которому принадлежит корень (или сумма корней, если их несколько) уравнения 8x – 2x = 50
Найдите решение неравенства
Найдите решение неравенства
Найдите решение неравенства
Найдите решение неравенства
Найдите сумму всех двузначных натуральных чисел, которые при делении на 7 дают в остатке 3.
Найдите сумму всех целых чисел, входящих в область определения функции
Найдите сумму всех целых чисел, входящих в область определения функции
Найдите сумму всех целых чисел, входящих в область определения функции
Найдите сумму значений параметра а, при которых количество корней уравнения (a – 30)x3 – 40x2 + 20x = 0 равно количеству общих точек линий х2 + у2 = а и y = 6 – |x – 2|
Найдите сумму корней уравнения
Найдите сумму целых решений неравенства на отрезке [-3;3]
Найдите сумму целых решений неравенства на отрезке [–1;12]
Найдите угловой коэффициент касательной к графику функции у = хlnх в точке х0 =3е
Найдите целое значение параметра а (или сумму таких целых значений), при которых множество решений неравенства содержит все члены некоторой возрастающей арифметической прогрессии с первым членом, равным – 1, и разностью, меньше или равной 2
Найдите число действительных значений х, лежащих на отрезке [0; 10] и обладающих тем свойством, что числа sinx, sin2x, sin3x являются тремя последовательными членами арифметической прогрессии
Найдите число корней уравнения ctg2x = ctg5x, принадлежащих промежутку [–4; 4]
Найдите число корней уравнения
Найдите число корней уравнения
Найдите число корней уравнения
Найдите число корней уравнения на отрезке
Найдите число пар целых чисел (х;у), удовлетворяющих уравнению
Найдите число решений системы уравнений
Найдите число решений системы уравнений
Найдите число решений системы уравнений
Найдите число точек разрыва функции , принадлежащих отрезку [0; 2π]
Найдите число точек разрыва функции
Найдите число целых значений из области определения функции
Найдите число целых значений из области определения функции таких, что
Найдите число целых значений параметра а, при которых множество решений неравенства содержит все члены некоторой возрастающей арифметической прогрессии с первым членом, равным – 8, и разностью, меньше или равной 6
Найдите число целых значений функции у = 6,6 · arcos x +1,6 · arcsin x
Найдите число целых решений неравенства на отрезке [0;5]
Найти значение выражения – корни уравнения 2x2 – 5x – 7 = 0.
Определите число корней уравнения
Основание прямой призмы является ромб, причем площади диагональных сечений равны 9,6 и 4. Найдите площадь боковой поверхности призмы.
Основанием пирамиды FABC является правильный треугольник ABC со стороной 12. Боковое ребро FA длиною 15 перпендикулярно основанию. Найдите расстояние между прямыми FB и АС.
Основанием пирамиды FABC является прямоугольный треугольник ABC с гипотенузой АВ = 15. Тангенс угла ВАС равен , а высота FA = 7,5. Найдите расстояние между прямыми FB и АС.
Основанием прямой призмы ABCA1B1C1 является прямоугольный треугольник с катетами АВ = 4 и ВС = 6. Высота призмы равна 10. Найдите объем пирамиды с вершинами в точке C1 и серединах ребер ВС, BB1 и A1B1
Основанием прямой призмы ABCA1B1C1 является прямоугольный треугольник с катетами АВ = 1 и ВС = 4. Высота призмы равна 8. Найдите объем пирамиды с вершиной в точке C1 и основанием, совпадающим с сечением призмы плоскостью, проходящей через середины ребер ВС, ВВ1 и A1B1
Радиусы вписанной и описанной около прямоугольного треугольника окружностей равны соответственно 3 и 11. Найдите площадь треугольника.
Решением неравенства является единственная точка. Укажите рисунок, на котором изображен график этой функции
Решите систему уравнений
Решите систему уравнений
Стороны прямоугольника равны 2 и 5. Через каждую точку на его меньшей стороне провели прямую, отсекающую прямоугольный треугольник с периметром 8. Найдите наименьшее значение площади оставшейся части прямоугольника
Сфера радиуса 2 касается плоскости в точке А. В этой же плоскости лежит основание конуса. Прямая, проходящая через центр основания конуса (точку С) и точку сферы, диаметрально противоположную точке А, проходит через точку М. Точка М является точкой касания сферы и конуса (их единственная общая точка). Найдите высоту конуса, если АC = 1
Торговая база закупила у изготовителя партию альбомов и поставила ее магазину по оптовой цене, которая на 30% больше цены изготовителя. Магазин установил розничную цену на альбом на 20% выше оптовой. При распродаже в конце сезона магазин снизил розничную цену на альбом на 10%. На сколько рублей больше заплатил покупатель по сравнению с ценой изготовителя, если на распродаже он приобрел альбом за 70,2 р.
Точки касания пятиугольника делят окружность, вокруг которой он описан, на части, длины которых пропорциональны числам: 1, 2, 2, 3, 4. Найдите площадь этого пятиугольника, если известно, что длина радиуса вписанной окружности является наименьшим, положительным корнем уравнения
Укажите наибольшее из чисел
Укажите номер графика убывающей функции
Укажите промежуток, которому принадлежит корень уравнения
Укажите функцию, сумма целых значений которой отрицательна
Упростите
Упростите выражение
Упростите выражение
Упростите выражение
Функция у = f(x), имеющая период Т = 5, задана графиком на промежутке [–1;4]. Найдите значение этой функции при х = 11
Числа а и b выбраны таким образом, что верно равенство . Найдите значение, которое при этом примет величина (или сумму таких значений, если эта величина может принять несколько значений).
Шесть чисел образуют возрастающую арифметическую прогрессию. Первый, второй и четвертый члены этой прогрессии являются решениями неравенства , а остальные не являются решениями этого неравенства. Найдите множество всех возможных значений первого члена таких прогрессий