Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
В системе уравнений зависимыми (несвободными) переменными можно считать переменные
В системе уравнений свободными (независимыми) можно считать переменные
В системе уравнений зависимыми (несвободными) переменными являются
В системе уравнений свободными переменными являются
Вектором–решением системы уравнений Ax̅=b̅ для и является вектор
Даны векторы a̅=(-1,1,-1), b̅=(1,1,1), c̅=(-1,-1,-1). Решением системы уравнений являются векторы:
Даны векторы a̅=(1,0,1), b̅=(1,1,2), c̅=(1,2,3). Решением системы уравнений являются векторы
Даны векторы a̅=(3,0,-1), b̅=(2,1,-1), c̅=(1,1,1). Решением системы уравнений являются векторы
Две системы линейных уравнений эквивалентны, если
Для системы уравнений фундаментальной может служить система векторов
Для системы уравнений общее решение можно записать в виде
Для системы уравнений фундаментальной системой решений могут служить векторы
Для системы уравнений зависимыми (несвободными) переменными можно считать
Для системы уравнений свободными независимыми переменными можно считать
Для системы уравнений фундаментальной может служить система векторов
Из векторов решениями системы уравнений являются вектора
Из векторов решениями системы уравнений являются вектора
Из векторов решениями системы уравнений являются вектора
Матрицей системы уравнений является матрица
Матрицей системы уравнений является матрица
Матрицей системы уравнений является матрица
Общее решение системы в координатной форме можно записать в виде
Общее решение системы можно записать в виде
Определитель системы уравнений равен
Размерность подпространства V решений системы равна
Размерность подпространства V решений системы равна
Размерность подпространства V решений системы равна
Размерность подпространства решений системы равна
Размерность пространства решений V системы уравнений равна
Расширенная матрица A̅ системы равна
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система уравнений
Решение системы , где А — невырожденная матрица, можно получить по формуле
Свободными переменными в системе уравнений являются
Свободными переменными в системе уравнений являются
Система имеет
Система уравнений Ax̅=b̅ совместна, если
Система уравнений совместна, если
Система уравнений с матрицей и вектором правых частей имеет вид
Система уравнений с расширенной матрицей
Ступенчатая форма матрицы имеет вид
Число векторов базиса подпространства V решений системы уравнений равно
Число векторов в ФСР системы уравнений равно
Число векторов фундаментальной системы решений системы равно: