СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   


Отправка файла на e-mail


Имя файла:4188.05.01;МТ.01;1
Размер:149 Kb
Дата публикации:2015-03-09 04:21:28
Описание:
Алгебра и геометрия (курс 3) - Модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
Алгебраическое дополнение элемента матрицы имеет вид
В системе уравнений зависимыми (несвободными) переменными можно считать переменные
В системе уравнений свободными (независимыми) можно считать переменные
В системе уравнений зависимыми (несвободными) переменными являются
В системе уравнений свободными переменными являются
Вектором–решением системы уравнений Ax̅=b̅ для и является вектор
Даны векторы a̅=(-1,1,-1), b̅=(1,1,1), c̅=(-1,-1,-1). Решением системы уравнений являются векторы:
Даны векторы a̅=(1,0,1), b̅=(1,1,2), c̅=(1,2,3). Решением системы уравнений являются векторы
Даны векторы a̅=(3,0,-1), b̅=(2,1,-1), c̅=(1,1,1). Решением системы уравнений являются векторы
Две системы линейных уравнений эквивалентны, если
Для системы уравнений фундаментальной может служить система векторов
Для системы уравнений общее решение можно записать в виде
Для системы уравнений фундаментальной системой решений могут служить векторы
Для системы уравнений зависимыми (несвободными) переменными можно считать
Для системы уравнений свободными независимыми переменными можно считать
Для системы уравнений фундаментальной может служить система векторов
Из векторов решениями системы уравнений являются вектора
Из векторов решениями системы уравнений являются вектора
Из векторов решениями системы уравнений являются вектора
Матрицей системы уравнений является матрица
Матрицей системы уравнений является матрица
Матрицей системы уравнений является матрица
Общее решение системы в координатной форме можно записать в виде
Общее решение системы можно записать в виде
Определитель системы уравнений равен
Размерность подпространства V решений системы равна
Размерность подпространства V решений системы равна
Размерность подпространства V решений системы равна
Размерность подпространства решений системы равна
Размерность пространства решений V системы уравнений равна
Расширенная матрица A̅ системы равна
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система
Расширенная матрица системы уравнений имеет вид: , тогда система уравнений
Решение системы , где А — невырожденная матрица, можно получить по формуле
Свободными переменными в системе уравнений являются
Свободными переменными в системе уравнений являются
Система имеет
Система уравнений Ax̅=b̅ совместна, если
Система уравнений совместна, если
Система уравнений с матрицей и вектором правых частей имеет вид
Система уравнений с расширенной матрицей
Ступенчатая форма матрицы имеет вид
Число векторов базиса подпространства V решений системы уравнений равно
Число векторов в ФСР системы уравнений равно
Число векторов фундаментальной системы решений системы равно:
Для отправки этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
  • Нажимая на кнопку "Отправить" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"

  • Перед отправкой убедитесь, что Ваш почтовый ящик позволяет принимать письма размером, приблизительно, в 213 Kb
  • Введите e-mail для отправки файла:

      

    .