СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   


Отправка файла на e-mail


Имя файла:3594.04.01;МТ.01;1
Размер:220 Kb
Дата публикации:2015-03-09 04:16:52
Описание:
Математика (курс 10) - Модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
В пространстве базис выражен через базис : ; ; . Матрица перехода от базиса к базису равна
В пространстве базис выражен через базис : ; ; . Матрица перехода от базиса к базису равна
В пространстве угол между функциями и равен
В пространстве угол между функциями и равен
В пространстве угол между функциями и равен
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования . Его матрица в базисе , , равна
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
В пространстве многочленов степени задан оператор дифференцирования и функция . Координаты образа по базису равны
Даны две системы векторов . Базис в R3 образуют векторы
Даны две системы векторов . Базис в R2 образуют системы
Даны две системы векторов . Базис в R3 образуют системы
Даны две системы векторов . Базис в R4 образуют системы
Даны две системы векторов . Базис в R2 образуют системы
Даны системы уравнений , , , . Линейные подпространства образуют множества решений систем
Даны системы уравнений , , , . Линейные подпространства образуют множества решений систем
Если и матрица линейного преобразования , то координаты образа равны
Если и матрица линейного преобразования , то координаты образа равны
Если и - матрица линейного преобразования А, то координаты образа равны
Если и - матрица линейного преобразования А, то координаты образа равны
Каноническая форма для имеет вид
Каноническая форма для имеет вид
Каноническая форма для имеет вид
Каноническая форма для имеет вид
Канонический вид квадратичной формы записывается так
Канонический вид квадратичной формы записывается так
Канонический вид квадратичной формы записывается так
Канонический вид квадратичной формы записывается так
Канонический вид квадратичной формы записывается так
Квадратичная форма является
Квадратичная форма является
Квадратичная форма является
Квадратичная форма является
Квадратичная форма
Квадратичная форма является
Квадратичная форма
Квадратичная форма является
Квадратичная форма является
Квадратичная форма является
Квадратичная форма отрицательна определена при
Квадратичная форма положительно определена при
Квадратичная форма положительно определена при
Квадратичная форма является
Квадратичная форма является
Квадратичная форма является
Координаты многочлена в стандартном базисе равны
Координаты многочлена в базисе равны
Координаты многочлена в стандартном базисе равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по базису равны
Координаты многочлена по стандартному базису равны
Координаты многочлена по стандартному базису равны
Координаты многочлена по базису равны
Координаты функции по базису равны
Координаты функции по базису равны
Координаты функции по базису равны
Координаты функции по базису равны
Координаты функции по базису равны
Координаты функции по базису равны
Матрица перехода от стандартного базиса в пространстве многочленов к базису , , равна
Матрица перехода от стандартного базиса в пространстве многочленов к базису , , равна
Матрица перехода от стандартного базиса в пространстве многочленов к базису , , равна
Матрица перехода от стандартного базиса в R3 к базису , , равна
Матрица перехода от стандартного базиса в R3 к базису , , равна
Матрица перехода от стандартного базиса в R3 к базису , , равна
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Матрицей квадратичной формы является матрица
Собственные векторы матрицы равны
Собственные векторы матрицы равны
Собственные числа матрицы равны
Собственные числа матрицы равны
Собственные числа матрицы равны
Собственные числа матрицы равны
Собственные числа матрицы равны
Собственные числа матрицы равны
Собственный базис матрицы состоит из векторов
Собственный базис матрицы состоит из векторов
Собственный вектор матрицы отвечает собственному значению
Собственный вектор матрицы отвечает собственному значению
Собственный вектор матрицы отвечает собственному числу
Собственный вектор матрицы отвечает собственному значению
Собственный вектор матрицы равны
Собственным числам отвечают собственные векторы матрицы , где равны
Среди множеств линейными подпространствами являются
Среди множеств линейными подпространствами являются
Среди множеств линейными подпространствами являются
Среди множества решений систем уравнений , , , линейные подпространства образуют
Среди множества решений систем уравнений , , , линейные подпространства образуют
Уравнение определяет кривую
Уравнение определяет кривую эллиптического типа при
Характеристический многочлен матрицы имеет вид
Характеристический многочлен матрицы имеет вид
Характеристический многочлен матрицы имеет вид
Характеристический многочлен матрицы имеет вид
Характеристический многочлен матрицы имеет вид
Для отправки этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
  • Нажимая на кнопку "Отправить" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"

  • Перед отправкой убедитесь, что Ваш почтовый ящик позволяет принимать письма размером, приблизительно, в 306 Kb
  • Введите e-mail для отправки файла:

      

    .