Выражение является
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в произвольной точке равен
Градиент функции в точке (1,2,3) равен
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в точке равен
Градиент функции в точке равен
Двойной интеграл , где - область, ограниченная линиями , равен повторному
Двойной интеграл , где - область, ограниченная линиями и , равен повторному
Двойной интеграл , где - область, ограниченная линиями и , равен повторному
Двойной интеграл по области , ограниченной линиями и , равен повторному
Двойным интегралом от функции по области называется предел интегральных сумм _________ , где - площадь области ,
Дифференциалы и принимаются равными приращениям аргументов и потому, что
Для функции найти частные производные и
Для функции найти частные производные и
Достаточным признаком экстремума функции в точке является
Если функция непрерывна в замкнутой ограниченной области , дифференцируема во внутренних точках и имеет в единственный экстремум - максимум, то своего наименьшего значения она достигает
Замкнутая область - это
Известно, что в точке полное приращение данной функции есть б.м. высшего порядка в сравнении с . Тогда дифференциал в этой точке
Интеграл равен повторному интегралу
Интеграл равен
Интеграл равен
Интеграл равен повторному интегралу
Касательная плоскость к сфере в точке имеет уравнение
Коэффициенты и в формуле для полного приращения дифференцируемой в точке функции равны
Множество точек плоскости называется открытой областью, если
Наибольшая скорость возрастания функции при переходе через точку (1,2) равна
Необходимым условием экстремума функции в точке является
Неявная функция задана уравнением . Тогда производная равна
Неявная функция задана уравнением . Тогда частные производные и соответственно раны
Областью определения функции является множество
Областью определения функции является множество
Областью определения функции является множество
Областью определения функции является
Областью определения функции является множество
Областью определения функции является множество
Переменная величина есть функция переменных, если
Полное приращение функции в точке равно
Полный дифференциал есть главная часть полного приращения потому, что
Полный дифференциал функции равен
Полный дифференциал функции равен
Полный дифференциал функции в точке равен
Полный дифференциал функции в точке равен
Полный дифференциал функции в точке равен
Полным дифференциалом функции в точке называется
Полным дифференциалом функции называется выражение
Применение полного дифференциала к приближенным вычислениям основано на формуле
Производная функции в точке в направлении, задаваемом вектором , равна
Производная функции в направлении вектора в точке равна
Производная функции в направлении вектора в точке равна
Производная функции в направлении в точке равна
Производная функции в точке в направлении, задаваемом вектором , равна
Производная функции в точке (1,2) по направлению биссектрисы первого координатного угла равна
Производная функции в точке по направлению биссектрисы первого координатного угла равна
Производная функции в точке по направлению вектора равна
Пространство - это
Свойство инвариантности формы записи дифференциала состоит в том, что
Стационарные точки функции
Стационарные точки функции
Стационарными точками функции будут
Стационарными точками функции будут
Стационарными точками функции будут
Точка является внутренней точкой множества на плоскости , если она
Точка является граничной точкой множества , если
Точка является точкой максимума функции , если
Функция , заданная на множестве точек , непрерывна в точке , если
Функция называется дифференцируемой в точке , если
Функция
Функция в точке (1,-4) имеет
Функция в точке (-1,-4)
Функция имеет в точке
Функция в точке (0,0) имеет частные производные . Следовательно
Частная производная функции равна
Частная производная функции равна
Частная производная функции равна
Частная производная функции равна
Частная производная функции равна
Частная производная функции равна
Частные приращения функции в точке равны
Частные производные функции по и в точке равны
Число есть предел функции в точке , если
и - стороны прямоугольника, - его площадь. Областью определения функции является множество
-окрестностью точки на плоскости называется
-окрестностью точки в называется
, , . Тогда производная равна
, где , . Тогда производная равна
. Тогда градиент в точке (1,2) равен
. Экстремумом этой функции будет
. Тогда градиент в точке (3,4) равен