Было проведено выборочное обследование доходов жителей. Оказалось, что половина жителей имеет доходы от 0 до 400 рублей, а половина - от 400 до 2000 рублей. По этим данным построили гистограмму. Она имеет вид
В итоге четырех измерений некоторой физической величины одним прибором получены следующие результаты: 8, 9, 11, 12. Выборочная средняя результатов измерений, выборочная и исправленная дисперсии ошибок прибора равны соответственно
В таблице статистического распределения, построенного по выборке, на одно число попала клякса Это число
В таблице статистического распределения, построенного по выборке, одна цифра написана неразборчиво Эта цифра
В таблице статистического распределения, построенного по выборке, одна цифра написана неразборчиво Эта цифра
Вариационный ряд выборки: -7, 2, 4, 0, 3, 2, 1, -5 имеет вид
Величина x имеет распределение N(a, s). Вероятность p{x<a+2s} равна
Величина x имеет распределение N(a, s). Вероятность p{x<a+1,65s}равна
Величина x имеет распределение N(a, s). Вероятность p{|x-a|<2s} равна
Всегда ли верна формула M(X+Y)=M(X)+M(Y)
Дан вариационный ряд выборки объема n = 10: -2, 0, 3, 3, 4, 5, 9, 11, 12, 15. Выборочная медиана для этого ряда - d равна
Дан вариационный ряд выборки объема n = 7: -5, -3, 0, 1, 1, 4, 16. Выборочная медиана d и выборочное среднее для этого ряда равны
Дан вариационный ряд выборки объема n = 8: -2, 0, 3, 4, 6, 9, 12, 16. Выборочная медиана d и выборочное среднее для этого ряда равны
Дан вариационный ряд выборки объема n = 9: -2, 0, 3, 3, 4, 5, 9, 11, 12. Выборочная медиана для этого ряда - d равна
Дана выборка объема n = 10. Статистическое распределение этой выборки имеет вид Тогда выборочное среднее для этой выборки равно
Дана выборка объема n = 10: 2, 3, 5, 5, 6, 6, 7, 8, 9. Выборочное среднее равно
Дана выборка объема n = 5: -2, -1, 1, 3, 4. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -3, -2, 0, 2, 3. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -4, -2, 2, 6, 8. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: -6, -4, 0, 4, 6. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 5: 2, 3, 5, 7, 8. Выборочное среднее и выборочная дисперсия S2 равны
Дана выборка объема n = 7: 3, 5, -2, 1, 0, 4, 3. Вариационный ряд для этой выборки и размах вариационного ряда
Дана выборка объема n: х1, х2, х3, …, хn. Выборочное среднее находится по формуле
Дана выборка объема n: х1, х2, х3, …, хn. Ее выборочное среднее равно . Выборочная дисперсия находится по формуле
Дана выборка объема n: х1, х2, …, хn. Выборочная средняя равна . Тогда статистический центральный момент k-го порядка находится по формуле
Дана выборка объема n: х1, х2, …, хn. Если каждый элемент выборки увеличить в 5 раз, то выборочное среднее
Дана выборка объема n: х1, х2, …, хn. Если каждый элемент выборки увеличить на 5 единиц, то
Дана выборка объема n: х1, х2, …, хn. Статистический (или эмпирический) начальный момент k-го порядка находится по формуле
Дана выборка: 0, 5, 2, 8, 2, 6, 1, 5. Вариационный ряд для этой выборки и его размах
Дана конкретная выборка объема n = 10: 2, 2, 5, 5, 4, 3, 4, 2, 2, 5. Статистическое распределение этой выборки имеет вид
Данные о прибыли, полученной в течение месяца, за последние 5 месяцев оказались следующими С помощью метода наименьших квадратов по этим точкам строится прямая регрессии. Эта прямая для прибыли в марте дает значение (Указание. Определить это значение без построения прямой регрессии)
Дано выборочное распределение Значение полигона, построенного по данному выборочному распределению, в точке 1280 и моды равны
Дано статистическое распределение выборки График эмпирической функции распределения для этой выборки имеет вид
Дано статистическое распределение выборки Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки объема n=50 Эмпирическая функция распределения для этого ряда имеет вид
Дано статистическое распределение выборки с числом вариант m: Выборочная средняя равна . Тогда статистический центральный момент k-го порядка находится по формуле:
Дано статистическое распределение выборки с числом вариант m: Выборочное среднее находится по формуле
Дано статистическое распределение выборки с числом вариант m: Статистический (или эмпирический) начальный момент k-го порядка находится по формуле
Дано статистическое распределение выборки с числом вариант m: Выборочная средняя равна . Тогда выборочная дисперсия S2 находится по формуле
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Дано статистическое распределение выборки: Выборочное среднее и выборочная дисперсия S2 равны
Для 2-х нормальных независимых величин с одинаковыми дисперсиями получены выборки объема nх=42 и ny=20 с такими характеристиками: . При уровне значимости a=0,05 проверяется гипотеза о равенстве генеральных средних mx=my (конкурирующая гипотеза mx≠my). Опытное значение статистики Т, применяемой для проверки гипотезы Н0, равно 4,17. Гипотеза Мх = Му
Для 2-х нормальных независимых величин с одинаковыми дисперсиями получены выборки объема nх=42 и ny=20 с такими характеристиками: . При уровне значимости a=0.05 проверяется гипотеза о равенстве генеральных средних mx=my (конкурирующая гипотеза mx≠my). Область принятия гипотезы Н0 равна
Для выборки объема n=9 рассчитали выборочную дисперсию S2=3,86. Исправленная дисперсия равна
Для обработки наблюдений методом наименьших квадратов построена прямая. Ее график:
Для построения доверительного интервала для дисперсии надо пользоваться таблицами
Для проверки гипотезы о равенстве 2-х генеральных средних надо пользоваться таблицами
Для сравнения 2-х генеральных средних совокупностей X и Y из них извлекли выборки объема n и m соответственно. Для проверки гипотезы о том, что mх=my, надо вычислить статистику
Для того чтобы построить доверительный интервал математического ожидания по выборке, когда дисперсия неизвестна, необходимо определить
Для того, чтобы вдвое сузить доверительный интервал, построенный для математического ожидания, во сколько раз надо увеличить число наблюдений
Для того, чтобы по выборке объема n= 10 построить доверительный интервал для математического ожидания нормального распределения, дисперсия которого неизвестна, нужны таблицы
Для того, чтобы построить 95%-ый доверительный интервал для математического ожидания m случайной величины, распределенной нормально с известной дисперсией s2 по выборке объема n, вычисляется и используется формула
Для упрощения счета из всех значений выборки вычли 1280. При этом эмпирическая дисперсия
Для упрощения счета из всех значений выборки вычли 1280. При этом эмпирическое среднее
Значение кумуляты, построенной по таблице, в точке 170, и медианы равны
Из генеральной совокупности извлечена выборка, данные по ней сведены в таблицу Оценка генеральной средней
Известно, что X~N(0,3), Y~N(0.5, 2), Х и Y независимы. S=X+2Y имеет распределение
Математическое ожидание и дисперсия случайной величины, имеющей плотность распределения , равны
Математическое ожидание и дисперсия случайной величины, распределенной равномерно на отрезке [1,3], равны
Медиана выборки равна
Наблюдения проводились над системой (х, у) 2-х величин. Результаты наблюдения записаны в таблицу Коэффициент корреляции равен
Наблюдения проводились над системой (х, у) 2-х величин. Результаты наблюдения записаны в таблицу Коэффициент корреляции равен
Наблюдения проводятся над системой (X : Y) двух случайных величин. Выборка состоит из пар чисел: (х1: y1), (х2: y2), …, (хn : yn). Найдены , S для хi и , S для yi (). Тогда выборочный коэффициент корреляции rxy находится по формуле
Плотность распределения f(x) можно найти по функции распределения F(х) по формуле
По выборке 1, 0, 4, 3, 1, 2, 3, 2, 0, 4 построен полигон
По выборке объема 100 надо построить доверительный интервал для математического ожидания нормального распределения, дисперсия которого известна. Для этого необходимо воспользоваться
По выборке объема n из нормального распределения с известной дисперсией s2 строится доверительный интервал для математического ожидания. Если объем выборки увеличить в 25 раз, длина доверительного интервала
По выборке объема n из нормального распределения с неизвестной дисперсией строится доверительный интервал для математического ожидания. Объем выборки увеличиваем в 16 раз. В предположении, что величины и S2 при этом изменятся мало, длина доверительного интервала примерно
По выборке объема n=100 вычислены выборочное среднее - 54 и выборочная дисперсия - 16. 95%-ый доверительный интервал для генерального среднего равен
По выборке объема n=9 вычислили выборочное среднее 15 и исправленную несмещенную дисперсию 9. 95%-ый доверительный интервал для математического ожидания m (t8,0.95=2,3) равен
По выборке построен доверительный интервал для генерального среднего. Оказалась, что генеральное среднее по такому объему выборки определяется с точностью 0,2. Чтобы повысить точность вдвое, надо объем выборки
По выборке построена гистограмма Медиана равна
По выборке построена гистограмма По виду гистограммы можно предполагать, что генеральная совокупность, из которой произведена выборка, имеет распределение
По выборке построена гистограмма По виду гистограммы можно предполагать, что генеральная совокупность, из которой произведена выборка, имеет распределение
По выборке построена гистограмма Медиана равна
По выборке построена статистическая таблица распределения Значение выборочной медианы
По выборке построена таблица статистического распределения выборки, имеющая вид.
По выборке построена таблица статистического распределения выборки. Эта таблица
Построить гистограмму и полигон распределения роста школьников по таблице Построить графически моду, найти медиану
Производится выборка объема n=100 из генеральной совокупности, имеющей распределение N (20,4). По выборке строится выборочное среднее . Эта случайная величина имеет распределение
Распределение выборки рабочих по времени, затраченному на обработку одной детали, приведено в таблице Эмпирическое среднее времени, затрачиваемого на обработку одной детали,
Самое маленькое значение в выборке 0, самое большое 8, медиана 2. По этой выборке построена гистограмма
Случайная величина x распределена равномерно на [0,1], h распределена равномерно на [2,6]. Ее можно получить из x с помощью линейного преобразования
Случайная величина X распределена «нормально с параметрами 0,1» - (N[0,1]). Для нее вероятность попасть внутрь интервала [-3,3] равна
Случайная величина X распределена «нормально с параметрами 3,2» - (N[3,2]). Для нее вероятность попасть внутрь интервала [-1,7] равна
Случайная величина X распределена «нормально с параметрами 3,2» - (N[3,2]). Случайная величина Y=(X-3)/2. Ее математическое ожидание, дисперсия и тип распределения
Случайная величина X распределена равномерно на отрезке [0, 1]. Случайная величина Y=X+2 будет иметь
Случайная величина распределена «нормально с параметрами 3,2» (N[3,2]). Ее математическое ожидание и дисперсия равна
Случайная величина распределена равномерно на отрезке [0, 2]. Ее математическое ожидание равно
Случайная величина распределена равномерно на отрезке [0, 4]. Вероятность попасть в интервал [1,3] равна
Случайная величина распределена равномерно на отрезке [0, 5]. P1 - вероятность, что случайно брошенная точка попадет на отрезок [0,1]. P2 - вероятность, что случайно брошенная точка попадет на отрезок [3,4]. Тогда можно утверждать, что
Состоятельной, но смещенной точечной оценкой параметра является
Формула D(-X)=D(X)
Функцию распределения F(х) можно найти по плотности вероятности f(х) по формуле
Эмпирический коэффициент корреляции между весом и ростом для выборки равен
x - стандартная нормальная случайная величина. Случайная величина x2 имеет распределение