СГА ответы Комбат бесплатно
Главная   Главная   Ответы   Ответы Комбат   Материалы   Скачать   Поиск   Поиск   Форум   Форум   Чат   Чат

   
Навигация

· Главная
· Новости

Общение

· Форум для студента
· Чат для студента
· Связь с нами

К прочтению

· Правила сервиса
· FAQ / ЧаВО
· Как правильно искать
· Как скачивать материалы
· Ответы к ЛС Интегратор
· Как помочь сайту
· Для вебмастеров


Инструменты

· Ответы Комбат
· Скачать материалы
· Поиск по сайту
· Поиск кода предмета



   

   

   




Детали файла
Имя файла:1357.03.03;МТ.01;1
Размер:209 Kb
Дата публикации:2015-03-09 03:38:56
Описание:
Математический анализ (курс 3) - Модульный тест

Список вопросов теста (скачайте файл для отображения ответов):
Длина дуги кривой с концами в точках О(0, 0) и А(3, 27) вычисляется с помощью интеграла
Длина дуги параболы с концами в точках О(0, 0) и А(2, 4) вычисляется с помощью интеграла
Для интегралов и на основании свойства монотонности интеграла имеет место неравенство
Для функции равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен сумме интегралов
Интеграл равен
Интеграл равен сумме интегралов
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл заменой переменной сводится к интегралу
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл заменой переменной сводится к интегралу
Интеграл равен
Интеграл равен
Интеграл равен
Интеграл равен
Несобственный интеграл
Несобственный интеграл
Несобственный интеграл
Объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями и , равен разности интегралов
Объем тела, образованного вращением вокруг оси фигуры, ограниченной параболой и осью , вычисляется с помощью интеграла
Определенным интегралом называется предел
Площадь криволинейного треугольника, ограниченного гиперболой и прямыми и , равна
Площадь криволинейной трапеции равна
Площадь криволинейной трапеции равна
Площадь криволинейной трапеции равна
Площадь области, ограниченной линиями и , вычисляется с помощью определенного интеграла
Площадь области, ограниченной линиями и , вычисляется с помощью определенного интеграла
Площадь области, ограниченной линиями и , вычисляется с помощью определенного интеграла
Площадь области, ограниченной линиями и , вычисляется с помощью определенного интеграла
Площадь области, ограниченной линиями и , вычисляется с помощью определенного интеграла
Площадь параболического сегмента, ограниченного параболой и осью , равна
Разложение дроби на простейшие равно
Разложение дроби на простейшие с неопределенными коэффициентами имеет вид
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
равен
Для скачивания этого файла Вы должны ввести код указаный на картинке справа в поле под этой картинкой --->


ВНИМАНИЕ:
Нажимая на кнопку "Скачать бесплатно" Вы подтверждаете свое полное и безоговорочное согласие с "Правилами сервиса"


  
  

.